Share:
Share this content in WeChat
X
Review
Research progress of resting-state functional magnetic resonance imaging in the brain function of insomnia disorder
CHEN Ziwei  JIANG Guihua  YE Xi  FENG Ying 

Cite this article as: CHEN Z W, JIANG G H, YE X, et al. Research progress of resting-state functional magnetic resonance imaging in the brain function of insomnia disorder[J]. Chin J Magn Reson Imaging, 2023, 14(1): 151-155. DOI:10.12015/issn.1674-8034.2023.01.028.


[Abstract] Insomnia disorder (ID) is the most common sleep disorder, and persistent insomnia is associated with hypertension and even cancer. Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect the blood oxygen level of brain tissue, and indirectly reflect brain function metabolism, which has become a powerful means to study insomnia, and is of great significance for pre-treatment evaluation, treatment strategy and disease management of insomnia. Various analysis methods based on rs-fMRI have been developed in recent years. In this review, we summarize the research progress of rs-fMRI brain function in insomnia disorder, discuss the common problems troubling current studies and shed light upon the outlook on the development trends, as well as important research directions. This review aims to provide a rationale for further exploration of neural mechanisms in ID.
[Keywords] insomnia disorder;sleep disorders;insomnia;brain function;magnetic resonance imaging;resting-state functional magnetic resonance imaging;brain functional imaging

CHEN Ziwei1, 2   JIANG Guihua2, 1*   YE Xi1, 2   FENG Ying2  

1 Jinan University, Guangzhou 510632, China

2 Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China

Corresponding author: Jiang GH, E-mail: GH.jiang2002@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. U1903120).
Received  2022-04-02
Accepted  2022-12-12
DOI: 10.12015/issn.1674-8034.2023.01.028
Cite this article as: CHEN Z W, JIANG G H, YE X, et al. Research progress of resting-state functional magnetic resonance imaging in the brain function of insomnia disorder[J]. Chin J Magn Reson Imaging, 2023, 14(1): 151-155. DOI:10.12015/issn.1674-8034.2023.01.028.

[1]
CHUNG K F, YEUNG W F, HO F Y Y, et al. Cross-cultural and comparative epidemiology of insomnia: The diagnostic and statistical manual (dsm), international classification of diseases (icd) and international classification of sleep disorders (icsd)[J]. Sleep Med, 2015, 16(4): 477-482. DOI: 10.1016/j.sleep.2014.10.018.
[2]
SOFI F, CESARI F, CASINI A, et al. Insomnia and risk of cardiovascular disease: A meta-analysis[J]. Eur J Prev Cardiol, 2014, 21(1): 57-64. DOI: 10.1177/2047487312460020.
[3]
HWANG Y, KNOBF M T. Sleep health in young women with breast cancer: A narrative review[J]. Support Care Cancer, 2022, 30(8): 6419-6428. DOI: 10.1007/s00520-022-06953-3.
[4]
PALAGINI L, MINIATI M, MASSA L, et al. Insomnia and circadian sleep disorders in ovarian cancer: Evaluation and management of underestimated modifiable factors potentially contributing to morbidity[J/OL]. J Sleep Res, 2022, 31(3): e13510 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/34716629/. DOI: 10.1111/jsr.13510.
[5]
TUCKER R P, CRAMER R J, LANGHINRICHSEN-ROHLING J, et al. Insomnia and suicide risk: A multi-study replication and extension among military and high-risk college student samples[J]. Sleep Med, 2021, 85: 94-104. DOI: 10.1016/j.sleep.2021.06.032.
[6]
GIORA E, GALBIATI A, MARELLI S, et al. Impaired visual processing in patients with insomnia disorder revealed by a dissociation in visual search[J]. J Sleep Res, 2017, 26(3): 338-344. DOI: 10.1111/jsr.12487.
[7]
LÉGER D, MASSUEL M A, METLAINE A, et al. Professional correlates of insomnia[J]. Sleep, 2006, 29(2): 171-178. DOI: 10.1093/sleep/29.2.171.
[8]
MORIN C M, JARRIN D C, IVERS H, et al. Incidence, persistence, and remission rates of insomnia over 5 years[J/OL]. Jama Netw Open, 2020, 3(11): e2018782 [2022-10-22]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2772563. DOI: 10.1001/jamanetworkopen.2020.18782.
[9]
DAI X J, PENG D C, GONG H H, et al. Altered intrinsic regional brain spontaneous activity and subjective sleep quality in patients with chronic primary insomnia: A resting-state fMRI study[J]. Neuropsych Dis Treat, 2014, 10: 2163-2175. DOI: 10.2147/NDT.S69681.
[10]
WANG T Y, LI S M, JIANG G H, et al. Regional homogeneity changes in patients with primary insomnia[J]. Eur Radiol, 2016, 26(5): 1292-1300. DOI: 10.1007/s00330-015-3960-4.
[11]
FENG Y, FU S S, LI C, et al. Interaction of gut microbiota and brain function in patients with chronic insomnia: A regional homogeneity study[J/OL]. Front Neurosci, 2022, 15: 804843 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/35069107/. DOI: 10.3389/fnins.2021.804843.
[12]
ZHANG Y C, ZHANG Z Z, WANG Y L, et al. Dysfunctional beliefs and attitudes about sleep are associated with regional homogeneity of left inferior occidental gyrus in primary insomnia patients: A preliminary resting state functional magnetic resonance imaging study[J]. Sleep Med, 2021, 81: 188-193. DOI: 10.1016/j.sleep.2021.02.039.
[13]
KÜBLBÖCK M, WOLETZ M, HÖFLICH A, et al. Stability of low-frequency fluctuation amplitudes in prolonged resting-state fMRI[J]. NeuroImage, 2014, 103: 249-257. DOI: 10.1016/j.neuroimage.2014.09.038.
[14]
ZUO X N, XING X X. Test-retest reliabilities of resting-state fmri measurements in human brain functional connectomics: A systems neuroscience perspective[J]. Neurosci Biobehav Rev, 2014, 45: 100-118. DOI: 10.1016/j.neubiorev.2014.05.009.
[15]
ZOU Q H, ZHU C Z, YANG Y H, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF[J]. J Neurosci Meth, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[16]
LI C, MA X F, DONG M, et al. Abnormal spontaneous regional brain activity in primary insomnia: A resting-state functional magnetic resonance imaging study[J]. Neuropsych Dis Treat, 2016, 12: 1371-1378. DOI: 10.2147/NDT.S109633.
[17]
DAI X J, NIE X, LIU X, et al. Gender differences in regional brain activity in patients with chronic primary insomnia: Evidence from a resting-state fmri study[J]. J Clin Sleep Med, 2016, 12(3): 363-374. DOI: 10.5664/jcsm.5586.
[18]
RAN Q, CHEN J, LI C, et al. Abnormal amplitude of low-frequency fluctuations associated with rapid-eye movement in chronic primary insomnia patients[J]. Oncotarget, 2017, 8(49): 84877-84888. DOI: 10.18632/oncotarget.17921.
[19]
MENG X Y, ZHENG J J, LIU Y P, et al. Increased dynamic amplitude of low frequency fluctuation in primary insomnia[J/OL]. Front Neurol, 2020, 11: 609 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/32714271/. DOI: 10.3389/fneur.2020.00609.
[20]
TAN Z, LUO J J, LUO S C, et al. Study of primary insomnia by the amplitude of low-frequency fluctuation combined with functional connectivity[J]. Chin J CT MRI, 2022, 20(2): 1-4. DOI: 10.3969/j.issn.1672-5131.2022.02.001.
[21]
ZHAO B, BI Y Z, LI L, et al. The instant spontaneous neuronal activity modulation of transcutaneous auricular vagus nerve stimulation on patients with primary insomnia[J/OL]. Front Neurosci, 2020, 14: 205 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/32231517/. DOI: 10.3389/fnins.2020.00205.
[22]
ZHANG Y, CONG D, LIU P, et al. Study on the mechanism of regulating the hypothalamic cortical hormone releasing hormone/corticotropin releasing hormone type I receptor pathway by vibro-annular abdominal massage under the brain-intestine interaction in the treatment of insomnia[J/OL]. Medicine, 2021, 100(19): e25854 [2022-10-22]. https://journals.lww.com/10.1097/MD.0000000000025854. DOI: 10.1097/MD.0000000000025854.
[23]
YANG T T, DONG X J, LEI X. Hard to initiate sleep: A new paradigm for resting-state fMRI[J]. Cogn Neurodynamics, 2021, 15(5): 825-833. DOI: 10.1007/s11571-020-09659-6.
[24]
ZANG Y F, JIANG T Z, LU Y L, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[25]
MA XF, FU SS, XU G, et al. Reduced left lateralized functional connectivity of the thalamic subregions between short-term and chronic insomnia disorder[J]. Sleep Biol Rhythms, 2022, 20(2): 229-237. DOI: 10.1007/s41105-021-00362-5.
[26]
MA X F, FU S S, YIN Y, et al. Aberrant functional connectivity of basal forebrain subregions with cholinergic system in short-term and chronic insomnia disorder[J]. J Affect Disord, 2021, 278: 481-487. DOI: 10.1016/j.jad.2020.09.103.
[27]
GENTILI C, CECCHETTI L, HANDJARAS G, et al. The case for preregistering all region of interest (ROI) analyses in neuroimaging research[J]. Eur J Neurosci, 2021, 53(2): 357-361. DOI: 10.1111/ejn.14954.
[28]
DAI X J, LIU B X, AI S Z, et al. Altered inter-hemispheric communication of default-mode and visual networks underlie etiology of primary insomnia[J]. Brain Imaging Behav, 2020, 14(5): 1430-1444. DOI: 10.1007/s11682-019-00064-0.
[29]
HSU A L, CHEN H S, HOU P, et al. Presurgical resting-state functional MRI language mapping with seed selection guided by regional homogeneity[J]. Magn Reson Med, 2020, 84(1): 375-383. DOI: 10.1002/mrm.28107.
[30]
CHENG Y X, XUE T, DONG F, et al. Abnormal functional connectivity of the salience network in insomnia[J]. Brain Imaging Behav, 2022, 16(2): 930-938. DOI: 10.1007/s11682-021-00567-9.
[31]
LI S M, TIAN J Z, LI M, et al. Altered resting state connectivity in right side frontoparietal network in primary insomnia patients[J]. Eur Radiol, 2018, 28(2): 664-672. DOI: 10.1007/s00330-017-5012-8.
[32]
DONG X J, QIN H X, WU T Y, et al. Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia[J/OL]. Brain Behav, 2018, 8(2): e00876 [2022-10-22]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.876. DOI: 10.1002/brb3.876.
[33]
ZUO X N, KELLY C, DI MARTINO A, et al. Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy[J]. J Neurosci, 2010, 30(45): 15034-15043. DOI: 10.1523/JNEUROSCI.2612-10.2010.
[34]
LI X H, GUO S G, WANG C J, et al. Increased interhemispheric resting-state functional connectivity in healthy participants with insomnia symptoms: A randomized clinical consort study[J/OL]. Medicine, 2017, 96(27): e7037 [2022-10-22]. https://journals.lww.com/00005792-201707070-00005. DOI: 10.1097/MD.0000000000007037.
[35]
FANG Y Y, ZHAO L P, HUANG G, et al. Interhemispheric voxel-mirrored homotopic connectivity in insomnia disorder: A resting-state functional magnetic resonance imaging study[J]. Natl Med J China, 2020, 100(19): 1484-1489. DOI: 10.3760/cma.j.cn112137‐20191019‐02268.
[36]
YU Q, DU Y H, CHEN J Y, et al. Application of graph theory to assess static and dynamic brain connectivity: Approaches for building brain graphs[J]. Proc IEEE, 2018, 106(5): 886-906. DOI: 10.1109/JPROC.2018.2825200.
[37]
ZUO X N, EHMKE R, MENNES M, et al. Network centrality in the human functional connectome[J]. Cereb Cortex, 2012, 22(8): 1862-1875. DOI: 10.1093/cercor/bhr269.
[38]
YAN C Q, WANG X, HUO J W, et al. Abnormal global brain functional connectivity in primary insomnia patients: A resting-state functional MRI study[J/OL]. Front Neurol, 2018, 9: 856 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/30450072/. DOI: 10.3389/fneur.2018.00856.
[39]
LIU X M, ZHENG J Y, LIU B X, et al. Altered connection properties of important network hubs may be neural risk factors for individuals with primary insomnia[J]. Sci Rep, 2018, 8(1): 5891 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/29651014/. DOI: 10.1038/s41598-018-23699-3.
[40]
SOTO F A, BASSETT D S, ASHBY F G. Dissociable changes in functional network topology underlie early category learning and development of automaticity[J]. Neuroimage, 2016, 141: 220-241. DOI: 10.1016/j.neuroimage.2016.07.032.
[41]
ACHARD S, BULLMORE E T. Efficiency and cost of economical brain functional networks[J]. Plos Comput Biol, 2007, 3(2): 174-183. DOI: 10.1371/journal.pcbi.0030017.
[42]
LIAO X H, VASILAKOS A V, HE Y. Small-world human brain networks: Perspectives and challenges[J]. Neurosci Biobehav Rev, 2017, 77: 286-300. DOI: 10.1016/j.neubiorev.2017.03.018.
[43]
MA X F, JIANG G H, FU S S, et al. Enhanced network efficiency of functional brain network in primary insomnia patients[J/OL]. Front Psychiatry, 2018, 9: 46 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/29515469/. DOI: 10.3389/fpsyt.2018.00046.
[44]
HUANG W K, LI Z M, WU S T, et al. Small-world network of patients with primary insomnia: A resting-state functional magnetic resonance imaging study[J]. J South Med Univ, 2021, 41(3): 424-429. DOI: 10.12122/j.issn.1673-4254.2021.03.16.
[45]
LU F M, LIU C H, LU S L, et al. Disrupted topology of frontostriatal circuits is linked to the severity of insomnia[J/OL]. Front Neurosci, 2017, 11: 214 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/28469552/. DOI: 10.3389/fnins.2017.00214.
[46]
WU Y F, ZHOU Z H, FU S S, et al. Abnormal rich club organization of structural network as a neuroimaging feature in relation with the severity of primary insomnia[J/OL]. Front Psychiatry, 2020, 11: 308 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/32390883/. DOI: 10.3389/fpsyt.2020.00308.
[47]
LI C, MAI Y Q, DONG M S, et al. Multivariate pattern classification of primary insomnia using three types of functional connectivity features[J/OL]. Front Neurol, 2019, 10: 1037 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/31632335/. DOI: 10.3389/fneur.2019.01037.
[48]
HUANG S H, ZHOU F, JIANG J, et al. Regional impairment of intrinsic functional connectivity strength in patients with chronic primary insomnia[J]. Neuropsych Dis Treat, 2017, 13: 1449-1462. DOI: 10.2147/NDT.S137292.
[49]
CALHOUN V D, MILLER R, PEARLSON G, et al. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery[J]. Neuron, 2014, 84(2): 262-274. DOI: 10.1016/j.neuron.2014.10.015.
[50]
CHEN Z, CHEN Z, CHEN B T. Brain functional connectivity (fc) invariance and variability under timeseries editing (timeset operation)[J/OL]. Comput Biol Med, 2022, 142: 105190 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/34995956/. DOI: 10.1016/j.compbiomed.2021.105190.
[51]
QI S, SILVA R F, ZHANG D, et al. Three‐way parallel group independent component analysis: Fusion of spatial and spatiotemporal magnetic resonance imaging data[J]. Hum Brain Mapp, 2022, 43(4): 1280-1294. DOI: 10.1002/hbm.25720.
[52]
FOO H, THALAMUTHU A, JIANG J, et al. Novel genetic variants associated with brain functional networks in 18,445 adults from the UK Biobank[J/OL]. Sci Rep, 2021, 11(1): 14633 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/34272439/. DOI: 10.1038/s41598-021-94182-9.
[53]
QU W, KAO C H, HONG H, et al. Single-channel eeg based insomnia detection with domain adaptation[J/OL]. Comput Biol Med, 2021, 139: 104989 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/34739969/. DOI: 10.1016/j.compbiomed.2021.104989.

PREV One case of cervical adenosarcoma
NEXT Research progress of high resolution magnetic resonance angiography in ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn