Share:
Share this content in WeChat
X
Review
Research progress of high resolution magnetic resonance angiography in ischemic stroke
WANG Zehua  GAO Yang 

Cite this article as: WANG Z H, GAO Y. Research progress of high resolution magnetic resonance angiography in ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(1): 156-160, 165. DOI:10.12015/issn.1674-8034.2023.01.029.


[Abstract] Intracranial and extracranial atherosclerosis is the main cause of ischemic stroke, in which plaque vulnerability and plaque location are closely related to the cause of ischemic stroke and the choice of treatment. At present, magnetic resonance high resolution vascular wall imaging relies on a variety of black blood technologies that can inhibit cerebrospinal fluid and blood signals at the same time, realizing the fine display of intracranial and extracranial atherosclerotic plaque, and becoming an effective means of stroke screening for high-risk population of cerebrovascular disease. In addition to observing the lumen, vascular wall imaging can also observe the components of plaque in the vascular wall, and conduct a comprehensive analysis of the plaque, which can accurately quantify the various components in the plaque, observe the relationship between the plaque and the entrance of the perforator, and provide sufficient imaging basis for the etiology classification, drug efficacy evaluation, and selection of surgical methods of ischemic stroke patients. This article reviews the high resolution vascular wall imaging technology and its evaluation value for plaque characteristics, the etiology classification of stroke and the evaluation of clinical therapeutic efficacy, it is emphasized that the best dosage and duration of statins can be taken as the future research direction.
[Keywords] stroke;magnetic resonance imaging;vascular wall imaging;etiological classification;clinical treatment;plaque

WANG Zehua   GAO Yang*  

Department of Radiology, the Affiliated Hospital of Inner Mongolia Medical University, Hohehot 010050, China

Corresponding author: Gao Y, E-mail: 1390903990@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Healthcare and Technology Plan Project of Inner Mongolia Autonomous Region (No. 202201250).
Received  2022-08-02
Accepted  2022-11-28
DOI: 10.12015/issn.1674-8034.2023.01.029
Cite this article as: WANG Z H, GAO Y. Research progress of high resolution magnetic resonance angiography in ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(1): 156-160, 165. DOI:10.12015/issn.1674-8034.2023.01.029.

[1]
KLEINDORFER D O, TOWFIGHI A, CHATURVEDI S, et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association[J]. Stroke, 2021, 52(7): 364-467. DOI: 10.1161/STR.0000000000000375.
[2]
CHEN C Y, LIN P T, WANG Y H, et al. Etiology and risk factors of intracranial hemorrhage and ischemic stroke in young adults[J]. J Chin Med Assoc, 2021, 84(10): 930-936. DOI: 10.1097/JCMA.0000000000000598.
[3]
CHEN P H, GAO S, WANG Y J, et al. Classifying Ischemic Stroke, from TOAST to CISS[J]. CNS Neurosci Ther, 2012, 18(6): 452-456. DOI: 10.1111/j.1755-5949.2011.00292.x.
[4]
TIAN X, TIAN B, SHI Z, et al. Assessment of Intracranial Atherosclerotic Plaques Using 3D Black-Blood MRI: Comparison With 3D Time-of-Flight MRA and DSA[J]. J Magn Reson Imaging, 2021, 53(2): 469-478. DOI: 10.1002/jmri.27341.
[5]
ZHANG N, LIU X, XIAO J, et al. Plaque Morphologic Quantification Reliability of 3D Whole-Brain Vessel Wall Imaging in Patients With Intracranial Atherosclerotic Disease: A Comparison With Conventional 3D Targeted Vessel Wall Imaging[J]. J Magn Reson Imaging, 2021, 54(1): 166-174. DOI: 10.1002/jmri.27550.
[6]
INOUE K, NAKAYAMA R, ISOSHIMA S, et al. Semiautomated Segmentation and Volume Measurements of Cervical Carotid High-Signal Plaques Using 3D Turbo Spin-Echo T1-Weighted Black-Blood Vessel Wall Imaging: A Preliminary Study[J/OL]. Diagnostics (Basel), 2022, 12(4): 1014 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/35454062/. DOI: 10.3390/diagnostics12041014.
[7]
ZHOU Z, CHEN S, BALU N, et al. Neural network enhanced 3D turbo spin echo for MR intracranial vessel wall imaging[J]. Magn Reson Imaging, 2021, 78: 7-17. DOI: 10.1016/j.mri.2021.01.004.
[8]
ZHANG L, ZHU Y, QI Y, et al. T2-Weighted Whole-Brain Intracranial Vessel Wall Imaging at 3 Tesla With Cerebrospinal Fluid Suppression[J/OL]. Front Neurosci, 2021, 15: 665076 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267868/pdf/fnins-15-665076.pdf. DOI: 10.3389/fnins.2021.665076.
[9]
WANG J, YARNYKH V L, YUAN C. Enhanced image quality in black-blood MRI using the improved motion-sensitized driven-equilibrium (iMSDE) sequence[J]. J Magn Reson Imaging, 2010, 31(5): 1256-1263. DOI: 10.1002/jmri.22149.
[10]
BAYLAM G D, WATASE H, CHU B, et al. Detection of Advanced Lesions of Atherosclerosis in Carotid Arteries Using 3-Dimensional Motion-Sensitized Driven-Equilibrium Prepared Rapid Gradient Echo (3D-MERGE) Magnetic Resonance Imaging as a Screening Tool[J]. Stroke, 2022, 53(1): 194-200. DOI: 10.1161/STROKEAHA.120.032505.
[11]
BALU N, YARNYKH V L, CHU B, et al. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI[J]. Magn Reson Med, 2011, 65(3): 627-637. DOI: 10.1002/mrm.22642.
[12]
COGSWELL P M, SIERO J, LANTS S K, et al. Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements[J]. J Magn Reson Imaging, 2018, 48(4): 1120-1128. DOI: 10.1002/jmri.26028.
[13]
VIESSMANN O, LI L, BENJAMIN P, et al. T2-Weighted intracranial vessel wall imaging at 7 Tesla using a DANTE-prepared variable flip angle turbo spin echo readout (DANTE-SPACE)[J]. Magn Reson Med, 2017, 77(2): 655-663. DOI: 10.1002/mrm.26152.
[14]
COOLEN B F, SCHOORMANS J, GILBERT G, et al. Double delay alternating with nutation for tailored excitation facilitates banding-free isotropic high-resolution intracranial vessel wall imaging[J/OL]. NMR Biomed, 2021, 34(9): 4567 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459252/pdf/NBM-34-e4567.pdf. DOI: 10.1002/nbm.4567.
[15]
DILBA K, VAN DIJK A C, CROMBAG G, et al. Association between Intraplaque Hemorrhage and Vascular Remodeling in Carotid Arteries: The Plaque at RISK (PARISK) Study[J]. Cerebrovasc Dis, 2021, 50(1): 94-99. DOI: 10.1159/000511935.
[16]
ZHANG D, WU X, TANG J, et al. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis[J]. Eur Radiol, 2021, 31(7): 5234-5242. DOI: 10.1007/s00330-020-07607-w.
[17]
GENG L, DU P, YUAN Y, et al. Impact of Arterial Remodeling of Intermediate Coronary Lesions on Long-Term Clinical Outcomes in Patients with Stable Coronary Artery Disease: An Intravascular Ultrasound Study[J/OL]. J Interv Cardiol, 2021, 23: 991575 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213497/pdf/JITC2021-9915759.pdf. DOI: 10.1155/2021/9915759.
[18]
WANG S, LI Z, LI X, et al. Plasma ApoB/AI: An effective indicator for intracranial vascular positive remodeling[J/OL]. J Neurol Sci, 2022, 36: 120226 [2022-08-02]. https://www.jns-journal.com/action/showPdf?pii=S0022-510X%2822%2900088-0. DOI: 10.1016/j.jns.2022.120226.
[19]
ZHANG D F, WU X Y, ZHANG W D, et al. The Relationship between Patterns of Remodeling and Degree of Enhancement in Patients with Atherosclerotic Middle Cerebral Artery Stenosis: A High-Resolution MRI Study[J]. Neurol India, 2021, 69(6): 1663-1669. DOI: 10.4103/0028-3886.333443.
[20]
CUI B, YANG D, ZHENG W, et al. Plaque enhancement in multi-cerebrovascular beds associates with acute cerebral infarction[J]. Acta Radiol, 2021, 62(1): 102-112. DOI: 10.1177/0284185120915604.
[21]
YAN X, GAO J, TANG M, et al. Combined Assessment of Elevated Plasma Lipoprotein-Associated Phospholipase A2 and Plaque Enhancement Improved Accuracy in the Risk of Acute Ischemic Stroke in Patients with Intracranial Artery Stenosis[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(12): 106103 [2022-08-02]. https://www.strokejournal.org/article/S1052-3057(21)00508-5/fulltext. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106103.
[22]
SONG X, ZHAO X, LIEBESKIND D S, et al. Incremental value of plaque enhancement in predicting stroke recurrence in symptomatic intracranial atherosclerosis[J]. Neuroradiology, 2020, 62(9): 1123-1131. DOI: 10.1007/s00234-020-02418-8.
[23]
KWEE R M, QIAO Y, LIU L, et al. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI[J]. Neuroradiology, 2019, 61(6): 651-657. DOI: 10.1007/s00234-019-02190-4.
[24]
BOS D, ARSHI B, VAN DEN BOUWHUIJSEN Q, et al. Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events[J]. J Am Coll Cardiol, 2021, 77(11): 1426-1435. DOI: 10.1016/j.jacc.2021.01.038.
[25]
LEE U Y, KWAK H S. Evaluation of Plaque Vulnerability via Combination of Hemodynamic Analysis and Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage (SNAP) Sequence for Carotid Intraplaque Hemorrhage[J/OL]. J Pers Med, 2021, 11(9): 856 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/34575633/. DOI: 10.3390/jpm11090856.
[26]
LU M, CUI Y, PENG P, et al. Shape and Location of Carotid Atherosclerotic Plaque and Intraplaque Hemorrhage: A High-resolution Magnetic Resonance Imaging Study[J]. J Atheroscler Thromb, 2019, 26(8): 720-727. DOI: 10.5551/jat.47449.
[27]
CUI Y, QIAO H, MA L, et al. Association of Age and Size of Carotid Artery Intraplaque Hemorrhage and Minor Fibrous Cap Disruption: A High Resolution Magnetic Resonance Imaging Study[J]. J Atheroscler Thromb, 2018, 25(12): 1222-1230. DOI: 10.5551/jat.43679.
[28]
SCHINDLER A, SCHINNER R, ALTAF N, et al. Prediction of Stroke Risk by Detection of Hemorrhage in Carotid Plaques: Meta-Analysis of Individual Patient Data[J/OL]. JACC Cardiovasc Imaging, 2020, 13: 395-406 [2022-08-02]. https://www.sciencedirect.com/science/article/pii/S1936878X19304371?via%3Dihub. DOI: 10.1016/j.jcmg.2019.03.028.
[29]
LARSON A S, BRINJIKJI W, KROLL N J, et al. Normalized intraplaque hemorrhage signal on MP-RAGE as a marker for acute ischemic neurological events[J]. Neuroradiol J, 2022, 35(1): 112-118. DOI: 10.1177/19714009211029263.
[30]
KERN K C, LIEBESKIND D S. Vessel Wall Imaging of Cerebrovascular Disorders[J/OL].Curr Treat Options Cardiovasc Med, 2019, 21(11): 65 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/31728661/. DOI: 10.1007/s11936-019-0782-8.
[31]
HOU Z, LI M, LYU J, et al. Intraplaque Enhancement Is Associated With Artery-to-Artery Embolism in Symptomatic Vertebrobasilar Atherosclerotic Diseases[J/OL]. Front Neurol, 2021, 12: 680827 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440987/pdf/fneur-12-680827.pdf. DOI: 10.3389/fneur.2021.680827.
[32]
WON S Y, CHA J, CHOI H S, et al. High-Resolution Intracranial Vessel Wall MRI Findings Among Different Middle Cerebral Artery Territory Infarction Types[J]. Korean J Radiol, 2022, 23(3): 333-342. DOI: 10.3348/kjr.2021.0615.
[33]
NAH H W, KANG D W, KWON S U, et al. Diversity of single small subcortical infarctions according to infarct location and parent artery disease: analysis of indicators for small vessel disease and atherosclerosis[J]. Stroke, 2010, 41(12): 2822-2827. DOI: 10.1161/STROKEAHA.110.599464.
[34]
LIANG J, LIU Y, XU X, et al. Cerebral Perforating Artery Disease: Characteristics on High-Resolution Magnetic Resonance Imaging[J]. Clin Neuroradiol, 2019, 29(3): 533-541. DOI: 10.1007/s00062-018-0682-4.
[35]
WU F, ZHANG Q, DONG K, et al. Whole-brain magnetic resonance imaging of plaque burden and lenticulostriate arteries in patients with different types of stroke[J/OL]. Ther Adv Neurol Disord, 2019, 12: 175628 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393832/pdf/10.1177_1756286419833295.pdf. DOI: 10.1177/1756286419833295.
[36]
VOGELS V, DAMMERS R, VAN BILSEN M, et al. Deep Cerebral Perforators: Anatomical Distribution and Clinical Symptoms: An Overview[J/OL]. Stroke, 2021, 52(10): 660-674 [2022-08-02]. https://www.ahajournals.org/doi/epub/10.1161/STROKEAHA.120.034096. DOI: 10.1161/STROKEAHA.120.034096.
[37]
JAFFRE A, RUIDAVETS J B, NASR N, et al. Tobacco Use and Cryptogenic Stroke in Young Adults[J]. J Stroke Cerebrovasc Dis, 2015, 24(12): 2694-2700. DOI: 10.1016/j.jstrokecerebrovasdis.2015.07.022.
[38]
KOPCZAK A, SCHINDLER A, BAYER-KARPINSKA A, et al. Complicated Carotid Artery Plaques as a Cause of Cryptogenic Stroke[J]. J Am Coll Cardiol, 2020, 76(19): 2212-2222. DOI: 10.1016/j.jacc.2020.09.532.
[39]
FAKIH R, ROA J A, BATHLA G, et al. Detection and Quantification of Symptomatic Atherosclerotic Plaques With High-Resolution Imaging in Cryptogenic Stroke[J]. Stroke, 2020, 51(12): 3623-3631. DOI: 10.1161/STROKEAHA.120.031167.
[40]
ZHOU P, WANG Y, SUN J, et al. Assessment of Therapeutic Response to Statin Therapy in Patients With Intracranial or Extracranial Carotid Atherosclerosis by Vessel Wall MRI: A Systematic Review and Updated Meta-Analysis[J/OL]. Front Cardiovasc Med, 2021, 8: 742935 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578267/pdf/fcvm-08-742935.pdf. DOI: 10.3389/fcvm.2021.742935.
[41]
DU R X, CAI J M, WANG Q J, et al. Effects of moderate dose rosuvastatin on carotid plaque in patients with diabetes mellitus evaluated by magnetic resonance imaging[J]. Chin J Cardiovasc Med, 2022, 50(6): 570-576. DOI: 10.3760/cma.j.cn112148-20220225-00136.
[42]
WU Y, LI F, WANG Y, et al. Standard-Dose Atorvastatin Treatment in Patients With Symptomatic Middle Cerebral Artery Atherosclerotic Stenosis: A Vessel Wall Magnetic Resonance Imaging Study[J/OL]. Front Neurol, 2021, 12: 693397 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693378/pdf/fneur-12-693397.pdf. DOI: 10.3389/fneur.2021.693397.
[43]
CHUNG J W, CHA J, LEE M J, et al. Intensive Statin Treatment in Acute Ischaemic Stroke Patients with Intracranial Atherosclerosis: a High-Resolution Magnetic Resonance Imaging study (STAMINA-MRI Study)[J]. J Neurol Neurosurg Psychiatry, 2020, 91(2): 204-211. DOI: 10.1136/jnnp-2019-320893.
[44]
SHINOZAKI N, MURAKAMI T, OHNO Y, et al. Effect of high-dose strong statin for preventing periprocedural ischemic complications of carotid artery stenting[J]. Heart Vessels, 2020, 35(6): 762-768. DOI: 10.1007/s00380-019-01552-5.
[45]
DU R, CAI J, CUI B, et al. Rapid improvement in carotid adventitial angiogenesis and plaque neovascularization after rosuvastatin therapy in statin treatment-naive subjects[J]. J Clin Lipidol, 2019, 13(5): 847-853. DOI: 10.1016/j.jacl.2019.07.008.
[46]
MA N, XU Z, LYU J, et al. Association of Perforator Stroke After Basilar Artery Stenting With Negative Remodeling[J]. Stroke, 2019, 50(3): 745-749. DOI: 10.1161/STROKEAHA.118.023838.
[47]
HOU Z, YAN L, ZHANG Z, et al. High-resolution magnetic resonance vessel wall imaging-guided endovascular recanalization for nonacute intracranial artery occlusion[J/OL]. J Neurosurg, 2021, 11: 1-7 [2022-08-02]. https://thejns.org/view/journals/j-neurosurg/137/2/article-p412.xml. DOI: 10.3171/2021.9.JNS211770.
[48]
HOU Z, ZHANG Z, YAN L, et al. Association of residual stenosis after balloon angioplasty with vessel wall geometries in intracranial atherosclerosis[J]. J Neurointerv Surg, 2022, 14(8): 762-766. DOI: 10.1136/neurintsurg-2021-017997.
[49]
LINDENHOLZ A, VAN DER SCHAAF I C, VAN DER KOLK A G, et al. MRI Vessel Wall Imaging after Intra-Arterial Treatment for Acute Ischemic Stroke[J]. AJNR Am J Neuroradiol, 2020, 41(4): 624-631. DOI: 10.3174/ajnr.A6460.
[50]
LIU Y, WANG M, ZHANG B, et al. Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 36 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/31262337/. DOI: 10.1186/s12968-019-0548-1.

PREV Research progress of resting-state functional magnetic resonance imaging in the brain function of insomnia disorder
NEXT Research progress of magnetic resonance imaging in the identification and evaluation of ischemic penumbra in acute cerebral infarction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn