Share:
Share this content in WeChat
X
Review
Research progress in imaging of carotid calcified plaque
SUN Yumeng  YANG Meng  XU Haiyang  WANG Zhenjia  YU Wei 

Cite this article as: SUN Y M, YANG M, XU H Y, et al. Research progress in imaging of carotid calcified plaque[J]. Chin J Magn Reson Imaging, 2023, 14(1): 172-177. DOI:10.12015/issn.1674-8034.2023.01.032.


[Abstract] Carotid artery stenosis is an important cause of ischemic stroke (IS), and early detection and early treatment can significantly reduce mortality and disability. Carotid endarterectomy (CEA) and Carotid artery stenting (CAS) are two revascularization modalities for the clinical treatment of carotid artery stenosis. Unstable plaques are strongly associated with the development of IS. Plaque composition affects plaque stability. However, the effect of calcification on plaque stability has not been fully elucidated. In addition, most previous studies have explored the relationship between the single image characteristics of calcification (such as size, number, location, shape, composition, etc.) and plaque stability, and there is also controversy between the results. Calcification, as a relative contraindication to CAS, is closely related to the occurrence of postoperative complications of CAS. By reviewing the previous literature, this paper further sorts out the relationship between calcification and plaque stability, as well as the relationship between calcification and postoperative complications of CAS, and puts forward existing problems and future research ideas, aiming to provide reference for research in this field.
[Keywords] carotid plaque;calcified plaque;plaque stability;carotid artery stenting;calcification image;magnetic resonance imaging;computed tomography angiography;positron emission tomography/magnetic resonance imaging;singlephoton emission computed tomography/computed tomography;cervical vascular ultrasound;high-resolution vessel wall magnetic resonance imaging

SUN Yumeng1   YANG Meng2   XU Haiyang1   WANG Zhenjia3   YU Wei1*  

1 Department of Medical Imaging, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China

2 Department of Medical Imaging, Xi'an Children's Hospital, Xi'an 710002, China

3 Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China

Corresponding author: Yu W, E-mail: nxyw1969@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Beijing Municipality (No. 7222047); China International Medical Exchange Foundation (No. Z-2014-07-2101).
Received  2022-06-03
Accepted  2022-12-20
DOI: 10.12015/issn.1674-8034.2023.01.032
Cite this article as: SUN Y M, YANG M, XU H Y, et al. Research progress in imaging of carotid calcified plaque[J]. Chin J Magn Reson Imaging, 2023, 14(1): 172-177. DOI:10.12015/issn.1674-8034.2023.01.032.

[1]
MA Y R, HAN N, ZHANG J. Multi-modality MRI study of relationship between carotid atherosclerotic stenosis and cerebral hemodynamics[J]. Chin J Magn Reson Imaging, 2018, 9(10): 747-753. DOI: 10.12015/issn.1674-8034.2018.10.006.
[2]
OSPEL J M, SINGH N, MARKO M, et al. Prevalence of Ipsilateral Nonstenotic Carotid Plaques on Computed Tomography Angiography in Embolic Stroke of Undetermined Source[J]. Stroke, 2020, 51(6): 1743-1749. DOI: 10.1161/STROKEAHA.120.029404.
[3]
MA Y R, ZHANG T, ZHANG J. The advantages and clinical value of high resolution MRI in evaluating the stability of carotid plaque[J]. Chin J Magn Reson Imaging, 2016, 7(8): 630-634. DOI: 10.12015/issn.1674-8034.2016.08.015.
[4]
LEE S J, LEE I K, JEON J H. Vascular Calcification-New Insights Into Its Mechanism[J/OL]. Int J Mol Sci, 2020, 21(8): 2685 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216228. DOI: 10.3390/ijms21082685.
[5]
WANG X, CHEN X, CHEN Z, et al. Arterial Calcification and Its Association With Stroke: Implication of Risk, Prognosis, Treatment Response, and Prevention[J/OL]. Front Cell Neurosci, 2022, 16(5): 845215 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130460. DOI: 10.3389/fncel.2022.845215.
[6]
MONTANARO M, SCIMECA M, ANEMONA L, et al. The Paradox Effect of Calcification in Carotid Atherosclerosis: Microcalcification is Correlated with Plaque Instability[J/OL]. Int J Mol Sci, 2021, 22(1): 395 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796057. DOI: 10.3390/ijms22010395.
[7]
BARRETT H E, VAN DER HEIDEN K, FARRELL E, et al. Calcifications in atherosclerotic plaques and impact on plaque biomechanics[J/OL]. J Biomech, 2019, 87: 1-12 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737099. DOI: 10.1016/j.jbiomech.2019.03.005.
[8]
MECHTOUFF L, SIGOVAN M, DOUEK P, et al. Simultaneous assessment of microcalcifications and morphological criteria of vulnerability in carotid artery plaque using hybrid 18F-NaF PET/MRI[J]. J Nucl Cardiol, 2022, 29(3): 1064-1074. DOI: 10.1007/s12350-020-02400-0.
[9]
SABA L, NARDI V, CAU R, et al. Carotid Artery Plaque Calcifications: Lessons From Histopathology to Diagnostic Imaging[J]. Stroke, 2022, 53(1): 290-297. DOI: 10.1161/STROKEAHA.121.035692.
[10]
XU X, HUA Y, LIU B, et al. Correlation Between Calcification Characteristics of Carotid Atherosclerotic Plaque and Plaque Vulnerability[J/OL]. Ther Clin Risk Manag, 2021, 17: 679-690 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257076. DOI: 10.2147/TCRM.S303485.
[11]
SABA L, CHEN H, CAU R, et al. Impact Analysis of Different CT Configurations of Carotid Artery Plaque Calcifications on Cerebrovascular Events[J]. AJNR Am J Neuroradiol, 2022, 43(2): 272-279. DOI: 10.3174/ajnr.A7401.
[12]
YANG J, PAN X, ZHANG B, et al. Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque[J]. Eur Radiol, 2018, 28(12): 4968-4977. DOI: 10.1007/s00330-018-5535-7.
[13]
SHI X, GAO J, LV Q, et al. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe?[J/OL]. Front Physiol, 2020, 11: 56 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013039. DOI: 10.3389/fphys.2020.00056.
[14]
BENITEZ J, FONTANAROSA D, WANG J, et al. Evaluating the Impact of Calcification on Plaque Vulnerability from the Aspect of Mechanical Interaction Between Blood Flow and Artery Based on MRI[J]. Ann Biomed Eng, 2021, 49(4): 1169-1182. DOI: 10.1007/s10439-020-02655-1.
[15]
KASHIWAZAKI D, YAMAMOTO S, HORI E, et al. Thin calcification (<2 mm) can highly predict intraplaque hemorrhage in carotid plaque: the clinical significance of calcification types[J]. Acta Neurochir (Wien), 2022, 164(6): 1635-1643. DOI: 10.1007/s00701-022-05205-x.
[16]
RUDENKO V, SEROVA N, KAPANADZE L, et al. Dual-Energy Computed Tomography for Stone Type Assessment: A Pilot Study of Dual-Energy Computed Tomography with Five Indices[J]. J Endourol, 2020, 34(9): 893-899. DOI: 10.1089/end.2020.0243.
[17]
ZHU G, HOM J, LI Y, et al. Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease[J]. Cardiovasc Diagn Ther, 2020, 10(4): 1048-1067. DOI: 10.21037/cdt.2020.03.10.
[18]
QU H, GAO Y, LI M, et al. Dual Energy Computed Tomography of Internal Carotid Artery: A Modified Dual-Energy Algorithm for Calcified Plaque Removal, Compared With Digital Subtraction Angiography[J/OL]. Front Neurol, 2020, 11: 621202 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901888. DOI: 10.3389/fneur.2020.621202.
[19]
BARADARAN H, GUPTA A. Extracranial Vascular Disease: Carotid Stenosis and Plaque Imaging[J]. Neuroimaging Clin N Am, 2021, 31(2): 157-166. DOI: 10.1016/j.nic.2021.02.002.
[20]
SAKAI Y, LEHMAN V T, EISENMENGER L B, et al. Vessel wall MR imaging of aortic arch, cervical carotid and intracranial arteries in patients with embolic stroke of undetermined source: A narrative review[J/OL]. Front Neurol, 2022, 13: 968390 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366886. DOI: 10.3389/fneur.2022.968390.
[21]
WEI H, ZHANG M, LI Y, et al. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study[J]. Quant Imaging Med Surg, 2020, 10(1): 269-282. DOI: 10.21037/qims.2019.09.11.
[22]
GIMNICH O A, ZIL E A A, BRUNNER G. Imaging Approaches to the Diagnosis of Vascular Diseases[J]. Curr Atheroscler Rep, 2022, 24(2): 85-96. DOI: 10.1007/s11883-022-00988-x.
[23]
SABA L, SANAGALA S S, GUPTA S K, et al. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application[J/OL]. Ann Transl Med, 2021, 9(14): 1206 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350643. DOI: 10.21037/atm-20-7676.
[24]
KARLOF E, BUCKLER A, LILJEQVIST M L, et al. Carotid Plaque Phenotyping by Correlating Plaque Morphology from Computed Tomography Angiography with Transcriptional Profiling[J]. Eur J Vasc Endovasc Surg, 2021, 62(5): 716-726. DOI: 10.1016/j.ejvs.2021.07.011.
[25]
YANG W, ZHONG Z, FENG G, et al. Advances in positron emission tomography tracers related to vascular calcification[J]. Annals of nuclear medicine, 2022, 36(9): 787-797. DOI: 10.1007/s12149-022-01771-3.
[26]
TZOLOS E, DWECK R. 18F-Sodium Fluoride (18F-NaF) for Imaging Microcalcification Activity in the Cardiovascular System[J]. Arterioscler Thromb Vasc Biol, 2020, 40(7): 1620-1626. DOI: 10.1161/ATVBAHA.120.313785.
[27]
HU Y, HU P, HU B, et al. Dynamic monitoring of active calcification in atherosclerosis by 18F-NaF PET imaging[J]. Int J Cardiovasc Imaging, 2021, 37(2): 731-739. DOI: 10.1007/s10554-020-02019-9.
[28]
FANG T, MENG N, BAI Y. Research progress of PET-MRI technology for carotid atherosclerotic plaques[J]. Chin J Magn Reson Imaging, 2021, 12(7): 105-109. DOI: 10.12015/issn.1674-8034.2021.07.025.
[29]
VAN DER HEIDEN K, BARRETT H E, MEESTER E J, et al. SPECT/CT imaging of inflammation and calcification in human carotid atherosclerosis to identify the plaque at risk of rupture[J]. J Nucl Cardiol, 2022, 29(5): 2487-2496. DOI: 10.1007/s12350-021-02745-0.
[30]
FUKUSHIMA D, KONDO K, HARADA N, et al. Quantitative comparison between carotid plaque hardness and histopathological findings: an observational study[J/OL]. Diagn Pathol, 2022, 17(1): 58 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275256. DOI: 10.1186/s13000-022-01239-y.
[31]
ELSAYED N, YEI K S, NAAZIE I, et al. The impact of carotid lesion calcification on outcomes of carotid artery stenting[J]. J Vasc Surg, 2022, 75(3): 921-929. DOI: 10.1016/j.jvs.2021.08.095.
[32]
MAEDA T, KAMIDE T, KIKKAWA Y, et al. Incidence and predictors of calcified cerebral emboli detected in patients who underwent endovascular procedures[J/OL]. Clinical neurology and neurosurgery, 2020, 192: 105715 [2022-11-26]. https://linkinghub.elsevier.com/retrieve/pii/S0303-8467(20)30058-5. DOI: 10.1016/j.clineuro.2020.105715.
[33]
BARRETT H E, CUNNANE E M, HIDAYAT H, et al. Calcification Volume Reduces Stretch Capability and Predisposes Plaque to Rupture in an in vitro Model of Carotid Artery Stenting[J]. Eur J Vasc Endovasc Surg, 2017, 54(4): 431-438. DOI: 10.1016/j.ejvs.2017.07.022.
[34]
ICHINOSE N, HAMA S, TSUJI T, et al. Predicting ischemic stroke after carotid artery stenting based on proximal calcification and the jellyfish sign[J]. J Neurosurg, 2018, 128(5): 1280-1288. DOI: 10.3171/2017.1.JNS162379.
[35]
LV P, JI A, ZHANG R, et al. Circumferential degree of carotid calcification is associated with new ischemic brain lesions after carotid artery stenting[J]. Quant Imaging Med Surg, 2021, 11(6): 2669-2676. DOI: 10.21037/qims-20-1244.
[36]
MUTZENBACH J S, MACHEGGER L, MOSCOTE-SALAZAR L R, et al. Carotid Calcium Volume and Stenosis after Stent Implantation[J/OL]. J Stroke Cerebrovasc Dis, 2020, 29(8): 104862 [2022-11-26]. https://linkinghub.elsevier.com/retrieve/pii/S1052-3057(20)30256-1. DOI: 10.1016/j.jstrokecerebrovasdis.2020.104862.
[37]
KATANO H, MASE M, NISHIKAWA Y, et al. Surgical treatment for carotid stenoses with highly calcified plaques[J]. J Stroke Cerebrovasc Dis, 2014, 23(1): 148-154. DOI: 10.1016/j.jstrokecerebrovasdis.2012.11.019.
[38]
TAO Y, HUA Y, JIA L, et al. Risk Factors for Residual Stenosis After Carotid Artery Stenting[J/OL]. Front Neurol, 2020, 11: 606924 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876267. DOI: 10.3389/fneur.2020.606924.
[39]
KATANO H, NISHIKAWA Y, YAMADA H, et al. Calcification in original plaque and restenosis following carotid artery stenting[J/OL]. Surg Neurol Int, 2017, 8: 279 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705928. DOI: 10.4103/sni.sni_263_17.
[40]
MISAKI K, UCHIYAMA N, MOHRI M, et al. Prediction of carotid artery in-stent restenosis by quantitative assessment of vulnerable plaque using computed tomography[J]. J Neuroradiol, 2016, 43(1): 18-24. DOI: 10.1016/j.neurad.2015.09.002.
[41]
KIM C H, KANG J, RYU W S, et al. Effects of Carotid Calcification on Restenosis After Carotid Artery Stenting: A Follow-Up Study with Computed Tomography Angiography[J/OL]. World Neurosurg, 2018, 117: e514-e521 [2022-11-26]. https://linkinghub.elsevier.com/retrieve/pii/S1878-8750(18)31283-X. DOI: 10.1016/j.wneu.2018.06.068.
[42]
MOON K, ALBUQUERQUE F C, LEVITT M R, et al. The myth of restenosis after carotid angioplasty and stenting[J]. J Neurointerv Surg, 2016, 8(10): 1006-1010. DOI: 10.1136/neurintsurg-2015-011938.
[43]
RONCHEY S, PRAQUIN B, ORRICO M, et al. Outcomes of 1000 Carotid Wallstent Implantations: Single-Center Experience[J]. J Endovasc Ther, 2016, 23(2): 267-274. DOI: 10.1177/1526602815626558.
[44]
SCULLEN T, MATHKOUR M, CARR C, et al. Anatomical Considerations for Endovascular Intervention for Extracranial Carotid Disease: A Review of the Literature and Recommended Guidelines[J/OL]. Journal of clinical medicine, 2020, 9(11): 3460 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693974. DOI: 10.3390/jcm9113460.
[45]
CHI Q J, CHEN Z, ZHU L, et al. Relationship between annular calcification of plaques in the carotid sinus and perioperative hemodynamic disorder in carotid angioplasty and stenting[J/OL]. J Stroke Cerebrovas Dis, 2022, 31(10): 106634 [2022-11-26]. https://linkinghub.elsevier.com/retrieve/pii/S1052-3057(22)00328-7. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106634.
[46]
NAKATA A, FUKUNAGA M, KAWASAKI D. The impact of plaque morphology in patients with peripheral artery disease on vessel dissection: an intravascular ultrasound observational study[J]. Heart Vessels, 2022, 37(6): 961-968. DOI: 10.1007/s00380-021-01994-w.
[47]
VERTES M, NGUYEN D T, SZEKELY G, et al. The incidence and risk factors of stent fracture in patients treated for proximal common carotid artery stenosis[J]. J Vasc Surg, 2020, 71(3): 824-831. DOI: 10.1016/j.jvs.2019.04.492.
[48]
GOVEDARSKI V, DIMITROVA E, VASSILEVA Z, et al. Failed carotid artery stenting followed by successful surgical intervention: Case report[J]. Turk Gogus Kalp Damar Cerrahisi Dergisi, 2021, 29(2): 259-262. DOI: 10.5606/tgkdc.dergisi.2021.21207.
[49]
LING A J, MWIPATAYI P, GANDHI T, et al. Stenting for carotid artery stenosis: fractures, proposed etiology and the need for surveillance[J]. J Vasc Surg, 2008, 47(6): 1220-1226; discussion 1226. DOI: 10.1016/j.jvs.2008.01.043.
[50]
GIANNOPOULOS S, SPEZIALE F, VADALA G, et al. Intravascular Lithotripsy for Treatment of Calcified Lesions During Carotid Artery Stenting[J]. J Endovasc Ther, 2021, 28(1): 93-99. DOI: 10.1177/1526602820954244.
[51]
VADALA G, GALASSI A R, NERLA R, et al. Shockwave intravascular lithoplasty for the treatment of calcified carotid artery stenosis: A very early single-center experience[J/OL]. Catheter Cardiovasc Interv, 2020, 96(6): E608-E613 [2022-11-26]. https://doi.org/10.1002/ccd.28963. DOI: 10.1002/ccd.28963.
[52]
HENRY L, HANSEN K, GABLE E, et al. Intravascular lithotripsy during transcarotid arterial revascularization for highly calcified lesions in high-risk patients[J]. Journal of vascular surgery cases and innovative techniques, 2020, 7(1): 68-73. DOI: 10.1016/j.jvscit.2020.10.018.
[53]
MARUTANI T, KASHIWAZAKI D, YAMAMOTO S, et al. Therapeutic strategy of severe circular calcified carotid plaque with hemodynamic impairment: A patient treated by carotid endarterectomy following balloon angioplasty to prevent hyperperfusion[J/OL]. Surg Neurol Int, 2022, 13: 360 [2022-11-26]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479608. DOI: 10.25259/SNI_417_2022.

PREV Research progress of deep learning brain tumor MRI image classification
NEXT Application and progress of advanced MRI techniques in differentiating malignant from benign parotid gland tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn