Share:
Share this content in WeChat
X
Review
Advanced application of amide proton transfer imaging in female reproductive system
LIU Xinyu  HE Yonglan  XUE Huadan  LI Yuan  JIN Zhengyu 

Cite this article as: LIU X Y, HE Y L, XUE H D, et al. Advanced application of amide proton transfer imaging in female reproductive system[J]. Chin J Magn Reson Imaging, 2023, 14(1): 198-202. DOI:10.12015/issn.1674-8034.2023.01.037.


[Abstract] Amide proton transfer-weighted (APTw) imaging is a method in chemical exchange saturation transfer imaging, which indirectly indicates pH and protein concentration in the tissue based on the proton exchange between amide protons on proteins and polypeptide chains and water protons. APTw imaging, as a new non-invasive magnetic resonance molecular imaging technology, can monitor the changes of protein concentration in early stage to reflect the abnormal proliferation of cells, so as to detect tumors earlier, and can provide important imaging information in uterine body, cervix, and ovarian lesions. It provides help in diagnosis, risk stratification and prognosis, and provides an important reference for clinical treatment. This paper mainly describes the research progress, development prospect and problems to be solved of APTw imaging in female reproductive system.
[Keywords] female reproductive system;uterine neoplasms;cervix neoplasms;ovarian neoplasms;amide proton transfer imaging;magnetic resonance imaging;functional magnetic resonance imaging

LIU Xinyu1   HE Yonglan1   XUE Huadan1   LI Yuan2   JIN Zhengyu1*  

1 Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China

2 Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China

Corresponding author: Jin ZY, E-mail: jin_zhengyu@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81901829).
Received  2022-01-14
Accepted  2022-12-20
DOI: 10.12015/issn.1674-8034.2023.01.037
Cite this article as: LIU X Y, HE Y L, XUE H D, et al. Advanced application of amide proton transfer imaging in female reproductive system[J]. Chin J Magn Reson Imaging, 2023, 14(1): 198-202. DOI:10.12015/issn.1674-8034.2023.01.037.

[1]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[2]
KAMIMURA K, NAKAJO M, YONEYAMA T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions[J]. Jpn J Radiol, 2019, 37(2): 109-116. DOI: 10.1007/s11604-018-0787-3.
[3]
WANG R R, LI Q L, TIAN W W, et al. Application situation and progress of amide proton transfer imaging in central nervous system[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1194-1197. DOI: 10.12015/issn.1674-8034.2020.12.027.
[4]
ZHOU J Y, LAL B, WILSON D A, et al. Amide proton transfer (APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6): 1120-1126. DOI: 10.1002/mrm.10651.
[5]
VAN ZIJL P C M, YADAV N N. Chemical exchange saturation transfer (CEST): what is in a Name and what isn't?[J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
[6]
CHEN Y, WANG X Q, SU T, et al. Feasibility evaluation of amide proton transfer-weighted imaging in the parotid glands: a strategy to recognize artifacts and measure APT value[J]. Quant Imaging Med Surg, 2021, 11(6): 2279-2291. DOI: 10.21037/qims-20-675.
[7]
VINOGRADOV E, SHERRY A D, LENKINSKI R E. CEST: From basic principles to applications, challenges and opportunities[J]. J Magn Reson, 2013, 229: 155-172. DOI: 10.1016/j.jmr.2012.11.024.
[8]
HE Y L, LI Y, LIN C Y, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted MRI for cervical cancer: a preliminary study[J]. J Magn Reson Imaging, 2019, 50(4): 1318-1325. DOI: 10.1002/jmri.26710.
[9]
LI Y, LIN C Y, QI Y F, et al. Non-invasive differentiation of endometrial adenocarcinoma from benign lesions in the uterus by utilization of amide proton transfer-weighted MRI[J]. Mol Imaging Biol, 2021, 23(3): 446-455. DOI: 10.1007/s11307-020-01565-x.
[10]
ZHANG S Y, SUN H Z, LI B B, et al. Variation of amide proton transfer signal intensity and apparent diffusion coefficient values among phases of the menstrual cycle in the normal uterus: a preliminary study[J]. Magn Reson Imaging, 2019, 63: 21-28. DOI: 10.1016/j.mri.2019.07.007.
[11]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
[12]
TAKAYAMA Y, NISHIE A, TOGAO O, et al. Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma: association with histologic grade[J]. Radiology, 2018, 286(3): 909-917. DOI: 10.1148/radiol.2017170349.
[13]
OCHIAI R, MUKUDA N, YUNAGA H, et al. Amide proton transfer imaging in differentiation of type II and type I endometrial carcinoma: a pilot study[J]. Jpn J Radiol, 2022, 40(2): 184-191. DOI: 10.1007/s11604-021-01197-3.
[14]
KONG Y Q, QU Q Q, MING L, et al. Value of amide proton transfer imaging and intravoxel incoherent motion imaging in estimating histologic grades of endometrial adenocarcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(9): 46-52. DOI: 10.12015/issn.1674-8034.2022.09.009.
[15]
MENG N, WANG X J, SUN J, et al. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(11): 8388-8398. DOI: 10.1007/s00330-021-07966-y.
[16]
FU F F, MENG N, HUANG Z, et al. Identification of histological features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2022, 12(2): 1311-1323. DOI: 10.21037/qims-21-189.
[17]
MENG N, FANG T, FENG P Y, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684.
[18]
LI Y, LIN C Y, QI Y F, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: correlation with Ki-67 proliferation status[J]. Magn Reson Imaging, 2021, 78: 18-24. DOI: 10.1016/j.mri.2021.02.006.
[19]
LI Y, LIU X Y, WANG X Q, et al. Using amide proton transfer-weighted MRI to non-invasively differentiate mismatch repair deficient and proficient tumors in endometrioid endometrial adenocarcinoma[J/OL]. Insights Imaging, 2021, 12(1): 182 [2022-12-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665952. DOI: 10.1186/s13244-021-01126-y.
[20]
MA C J, TIAN S F, SONG Q L, et al. Amide Proton Transfer-Weighted Imaging Combined With Intravoxel Incoherent Motion for Evaluating Microsatellite Instability in Endometrial Cancer[J/OL]. J Magn Reson Imaging, 2022 [2022-12-03]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.28287. DOI: 10.1002/jmri.28287.
[21]
TIAN S F, LIU A L, CHEN L H, et al. Evaluation of microsatellite instability in endometrial carcinoma by amide proton transfer imaging and diffusion kurtosis imaging[J]. J China Clin Med Imaging, 2022, 33(5): 345-349. DOI: 10.12117/jccmi.2022.05.009.
[22]
MA C J, LIU A L, TIAN S F, et al. Preliminary study of APT combined with T2 mapping sequence in preoperative risk assessment of endometrial carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
[23]
MA Y, HOU M Y, ZHOU F, et al. Amide proton transfer imaging and intravoxel incoherent motion in evaluating risk stratification of early-stage endometrial cancer[J]. Chin J Med Imaging, 2022, 30(6): 600-605. DOI: 10.3969/j.issn.1005-5185.2022.06.015.
[24]
LU X L, LIU A L, LI Y, et al. Feasibility of the combination between amide proton transfer and dynamic contract enhanced-MRI for preoperative risk assessment in patients with endometrial carcinoma[J]. Chin J Med Imaging, 2022, 30(9): 947-952, 956. DOI: 10.3969/j.issn.1005-5185.2022.09.014.
[25]
HE Y L, LIN C Y, QI Y F, et al. Three-dimensional amide proton transfer-weighted MR imaging for differentiating cervical squamous cell carcinoma from normal cervix[J]. Radiol Pract, 2019, 34(11): 1198-1201. DOI: 10.13609/j.cnki.1000-0313.2019.11.005.
[26]
MENG N, WANG J, SUN J, et al. Using amide proton transfer to identify cervical squamous carcinoma/adenocarcinoma and evaluate its differentiation grade[J]. Magn Reson Imaging, 2019, 61: 9-15. DOI: 10.1016/j.mri.2019.05.005.
[27]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[28]
HOU M Y, SONG K, REN J P, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 87 [2022-12-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780242. DOI: 10.1186/s12885-022-09205-z.
[29]
LI B B, SUN H Z, ZHANG S Y, et al. Amide proton transfer imaging to evaluate the grading of squamous cell carcinoma of the cervix: a comparative study using 18F FDG PET[J]. J Magn Reson Imaging, 2019, 50(1): 261-268. DOI: 10.1002/jmri.26572.
[30]
HE Y L, LIN C Y, QI Y F, et al. Amide proton transfer-weighted MRI of cervical squamous carcinoma: correlation with Ki-67 proliferation status[J]. Chin J Radiol, 2021, 55(5): 517-521. DOI: 10.3760/cma.j.cn112149-20200415-00561.
[31]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of ⅠB1-ⅡA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2022-12-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512406. DOI: 10.3389/fonc.2022.916846.
[32]
ISHIMATSU K, NISHIE A, TAKAYAMA Y, et al. Amide proton transfer imaging for differentiating benign ovarian cystic lesions: Potential of first time right[J/OL]. Eur J Radiol, 2019, 120: 108656 [2022-12-03]. https://www.ejradiology.com/article/S0720-048X(19)30306-7/fulltext. DOI: 10.1016/j.ejrad.2019.108656.
[33]
ANDREOTTI R F, TIMMERMAN D, STRACHOWSKI L M, et al. O-RADS US risk stratification and management system: a consensus guideline from the ACR ovarian-adnexal reporting and data system committee[J]. Radiology, 2020, 294(1): 168-185. DOI: 10.1148/radiol.2019191150.
[34]
ZHENG Y, WANG X M, ZHAO X N. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development[J/OL]. Biomed Res Int, 2016, 2016: 3052723 [2022-12-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112326. DOI: 10.1155/2016/3052723.
[35]
ZHANG H, KANG H Y, ZHAO X N, et al. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development[J]. Eur Radiol, 2016, 26(10): 3368-3376. DOI: 10.1007/s00330-015-4188-z.
[36]
YU L, CHEN Y H, CHEN M, et al. Amide Proton Transfer MRI Signal as a Surrogate Biomarker of Ischemic Stroke Recovery in Patients With Supportive Treatment[J/OL]. Front Neurol, 2019, 10: 104 [2022-12-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395437. DOI: 10.3389/fneur.2019.00104.
[37]
HARSTON G W, TEE Y K, BLOCKLEY N, et al. Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging[J]. Brain, 2015, 138(Pt 1): 36-42. DOI: 10.1093/brain/awu374.
[38]
YU H, LOU H L, ZOU T Y, et al. Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma[J]. Eur Radiol, 2017, 27(11): 4516-4524. DOI: 10.1007/s00330-017-4867-z.
[39]
JIANG S S, YU H, WANG X L, et al. Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla[J]. Eur Radiol, 2016, 26(1): 64-71. DOI: 10.1007/s00330-015-3805-1.
[40]
JOO B, HAN K, AHN S S, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma[J]. Eur Radiol, 2019, 29(12): 6643-6652. DOI: 10.1007/s00330-019-06203-x.
[41]
LI C M, PENG S, WANG R, et al. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla[J]. Eur Radiol, 2014, 24(10): 2631-2639. DOI: 10.1007/s00330-014-3241-7.
[42]
WANG R R, CHEN P D, SHEN Z W, et al. Brain Amide Proton Transfer Imaging of Rat With Alzheimer's Disease Using Saturation With Frequency Alternating RF Irradiation Method[J/OL]. Front Aging Neurosci, 2019, 11: 217 [2022-12-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713910. DOI: 10.3389/fnagi.2019.00217.

PREV Research progress of MRI in placenta accrete spectrum disorders
NEXT Magnetic resonance voxel analysis and diffusion kurtosis imaging of medial temporal lobe in patients with temporal lobe epilepsy and cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn