Share:
Share this content in WeChat
X
Clinical Article
Quantitative susceptibility mapping of substantia nigra in the diagnosis of Parkinson's disease: A Meta analysis
WU Mingzhen  LUAN Jixin  ZHANG Chuanchen  XU Yongzhou  HE Chengbing  WANG Yu  ZHANG Ruxin 

Cite this article as: WU M Z, LUAN J X, ZHANG C C, et al. Quantitative susceptibility mapping of substantia nigra in the diagnosis of Parkinson's disease: A Meta analysis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 6-11. DOI:10.12015/issn.1674-8034.2023.02.002.


[Abstract] Objective To systematically evaluate the diagnostic performance of quantitative susceptibility mapping (QSM) in the substantia nigra for Parkinson's disease (PD) using Meta-analysis.Materials and Methods A systematic literature search in the PubMed, EMBASE, the Cochrane Library, Web of Science, CNKI, Wanfang Data, China Biology Medicine disc (CBMdisc) and VIP databases was performed for studies about QSM in the diagnosis of PD from inception to May 2022. Two researchers independently screened literature, extracted data, and assessed the risk of bias of the included studies. RevMan 5.0 and Stata 17.0 software were used for Meta-analysis.Results A total of 16 studies including 702 patients with PD and 497 healthy control participants were enrolled in this Meta-analysis. QSM showed a pooled sensitivity (Sen), specificity (Spe), positive likelihood ratio (+LR), negative likelihood ratio (-LR), and diagnostic odds ratio (DOR) with their 95% confidence intervals (CI) of 0.87 (0.83-0.90), 0.77 (0.69-0.84), 3.84 (2.74-5.39), 0.17 (0.12-0.22) and 23.19 (13.41-40.07). The area under the curve (AUC) was 0.90 (0.87-0.93). According to subgroup analysis, the AUC of a specific measurement of substantial nigra pars compacta [AUC=0.90 (95% CI: 0.87-0.92)], slice thickness ≤1 mm [AUC=0.93 (95% CI: 0.91-0.95)] is superior than measurement of the whole substantial pars [AUC=0.81 (95% CI: 0.77-0.84)], slice thickness>1 mm [AUC=0.88 (95% CI: 0.85-0.91)]. Deek's funnel plot showed no publication bias (P=0.24).Conclusions The current evidence shows that QSM had a favorable diagnostic performance in diagnosing PD, especially in a specific measurement of substantial nigra or slice thickness ≤1 mm, which provides imaging basis for early diagnosis and follow-up of PD.
[Keywords] Parkinson's disease;substantia nigra;quantitative susceptibility mapping;Meta analysis;magnetic resonance imaging

WU Mingzhen1   LUAN Jixin2   ZHANG Chuanchen1*   XU Yongzhou3   HE Chengbing1   WANG Yu1   ZHANG Ruxin1  

1 Department of MR, Liaocheng People's Hospital, Liaocheng 252000, China

2 Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China

3 Philips (China) Investment Co, Ltd., Shanghai 200072, China

*Correspondence to: Zhang CC, E-mail: Zhangchuanchen666@163.com

Conflicts of interest   None.

Received  2022-10-09
Accepted  2023-01-12
DOI: 10.12015/issn.1674-8034.2023.02.002
Cite this article as: WU M Z, LUAN J X, ZHANG C C, et al. Quantitative susceptibility mapping of substantia nigra in the diagnosis of Parkinson's disease: A Meta analysis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 6-11. DOI:10.12015/issn.1674-8034.2023.02.002.

[1]
LEE H, CHO H, LEE M J, et al. Differential effect of iron and myelin on susceptibility MRI in the substantia nigra[J]. Radiology, 2021, 301(3): 682-691. DOI: 10.1148/radiol.2021210116.
[2]
KANG J J, CHEN Y, XU G D, et al. Combining quantitative susceptibility mapping to radiomics in diagnosing Parkinson's disease and assessing cognitive impairment[J]. Eur Radiol, 2022, 32(10): 6992-7003. DOI: 10.1007/s00330-022-08790-8.
[3]
WHITING P F, RUTJES A W, WESTWOOD M E, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med, 2011, 155(8): 529-536. DOI: 10.7326/0003-4819-155-8-201110180-00009.
[4]
AZUMA M, HIRAI T, YAMADA K, et al. Lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease measured with quantitative susceptibility mapping[J]. AJNR Am J Neuroradiol, 2016, 37(5): 782-788. DOI: 10.3174/ajnr.4645.
[5]
BARBOSA J H, SANTOS A C, TUMAS V, et al. Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2[J]. Magn Reson Imaging, 2015, 33(5): 559-565. DOI: 10.1016/j.mri.2015.02.021.
[6]
CHENG Z H, ZHANG J P, HE N Y, et al. Radiomic features of the nigrosome-1 region of the substantia nigra: using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson's disease[J/OL]. Front Aging Neurosci, 2019, 11: 167 [2022-06-30]. https://pubmed.ncbi.nlm.nih.gov/31379555/. DOI: 10.3389/fnagi.2019.00167.
[7]
DU G W, LIU T, LEWIS M M, et al. Quantitative susceptibility mapping of the midbrain in Parkinson's disease[J]. Mov Disord, 2016, 31(3): 317-324. DOI: 10.1002/mds.26417.
[8]
FENG Y Y, XU Z F, HE X H, et al. Value of MR quantitative susceptibility mapping in the diagnosis of Parkinson's disease[J]. Int J Radiat Med Nucl Med, 2020, 44(7): 429-434. DOI: 10.3760/cma.j.cn121381-202001026-00044.
[9]
FU X D, DENG W B, CUI X Q, et al. Time-specific pattern of iron deposition in different regions in Parkinson's disease measured by quantitative susceptibility mapping[J/OL]. Front Neurol, 2021, 12: 631210 [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371047/. DOI: 10.3389/fneur.2021.631210.
[10]
KIM P H, LEE D H, SUH C H, et al. Diagnostic performance of loss of nigral hyperintensity on susceptibility-weighted imaging in Parkinsonism: an updated meta-analysis[J]. Eur Radiol, 2021, 31(8): 6342-6352. DOI: 10.1007/s00330-020-07627-6.
[11]
LI G Y, ZHAI G Q, ZHAO X X, et al. 3D texture analyses within the substantia nigra of Parkinson's disease patients on quantitative susceptibility maps and R2 maps[J]. Neuroimage, 2019, 188: 465-472. DOI: 10.1016/j.neuroimage.2018.12.041.
[12]
LIU X L, YANG L Q, LIU F T, et al. Short-echo-time magnitude image derived from quantitative susceptibility mapping could resemble neuromelanin-sensitive MRI image in substantia nigra[J/OL]. BMC Neurol, 2020, 20(1): 262 [2022-06-30]. https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-020-01828-8. DOI: 10.1186/s12883-020-01828-8.
[13]
MURAKAMI Y, KAKEDA S, WATANABE K, et al. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease[J]. AJNR Am J Neuroradiol, 2015, 36(6): 1102-1108. DOI: 10.3174/ajnr.A4260.
[14]
SJÖSTRÖM H, GRANBERG T, WESTMAN E, et al. Quantitative susceptibility mapping differentiates between Parkinsonian disorders[J]. Parkinsonism Relat Disord, 2017, 44: 51-57. DOI: 10.1016/j.parkreldis.2017.08.029.
[15]
TAKAHASHI H, WATANABE Y, TANAKA H, et al. Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson's disease[J]. Eur J Radiol, 2018, 109: 48-56. DOI: 10.1016/j.ejrad.2018.06.024.
[16]
XIAO B, HE N Y, WANG Q, et al. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson's disease[J/OL]. Neuroimage Clin, 2019, 24: 102070 [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861598/. DOI: 10.1016/j.nicl.2019.102070.
[17]
ZHANG Y, YANG M, WANG F R, et al. Histogram analysis of quantitative susceptibility mapping for the diagnosis of Parkinson's disease[J]. Acad Radiol, 2022, 29(Suppl 3): S71-S79. DOI: 10.1016/j.acra.2020.10.027.
[18]
XIONG W, TANG B S, LEI L F. A review on evaluating application of abnormal iron deposition in brain on diagnosis and differential diagnosis of Parkinson's disease[J]. Chin J Geriatr, 2019, 38(5): 594-600. DOI: 10.3760/cma.j.issn.0254-9026.2019.05.029.
[19]
MAZZUCCHI S, DEL PRETE E, COSTAGLI M, et al. Morphometric imaging and quantitative susceptibility mapping as complementary tools in the diagnosis of Parkinsonisms[J]. Eur J Neurol, 2022, 29(10): 2944-2955. DOI: 10.1111/ene.15447.
[20]
MAHLKNECHT P, KRISMER F, POEWE W, et al. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease[J]. Mov Disord, 2017, 32(4): 619-623. DOI: 10.1002/mds.26932.
[21]
CHAU M T, TODD G, WILCOX R, et al. Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: a systematic review and meta-analysis[J]. Parkinsonism Relat Disord, 2020, 78: 12-20. DOI: 10.1016/j.parkreldis.2020.07.002.
[22]
YANG T, ZHOU B, LI D J, et al. Susceptibility weighted imaging of substantia nigra in diagnosis of Parkinson disease: a Meta analysis[J]. Chin J Med Imaging Technol, 2015, 31(4): 508-511. DOI: 10.13929/j.1003-3289.2015.04.006.
[23]
PYATIGORSKAYA N, SANZ-MORÈRE C B, GAURAV R, et al. Iron imaging as a diagnostic tool for Parkinson's disease: a systematic review and meta-analysis[J/OL]. Front Neurol, 2020, 11: 366 [2022-06-30]. https://doi.org/10.3389/fneur.2020.00366. DOI: 10.3389/fneur.2020.00366.
[24]
HU Y M, LIU J, QUAN F Y. Diagnostic value of transcranial sonography for patients with Parkinson disease in China: Meta-analysis[J]. Chin J Med Imaging Technol, 2018, 34(8): 1173-1177. DOI: 10.13929/j.1003-3289.201712162.
[25]
SAIKIRAN P, PRIYANKA. Effectiveness of QSM over R2* in assessment of Parkinson's disease - A systematic review[J]. Neurol India, 2020, 68(2): 278-281. DOI: 10.4103/0028-3886.284377.
[26]
FURUKAWA K, SHIMA A, KAMBE D, et al. Motor progression and nigrostriatal neurodegeneration in Parkinson disease[J]. Ann Neurol, 2022, 92(1): 110-121. DOI: 10.1002/ana.26373.
[27]
HE N, CHEN Y, LEWITT P A, et al. Application of neuromelanin MR imaging in Parkinson disease[J]. J Magn Reson Imaging, 2023, 57(2): 337-352. DOI: 10.1002/jmri.28414.
[28]
WANG J, HUANG Z, LI Y F, et al. Neuromelanin-sensitive MRI of the substantia nigra: an imaging biomarker to differentiate essential tremor from tremor-dominant Parkinson's disease[J]. Park Relat Disord, 2019, 58: 3-8. DOI: 10.1016/j.parkreldis.2018.07.007.
[29]
SOFIC E, PAULUS W, JELLINGER K, et al. Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains[J]. J Neurochem, 1991, 56(3): 978-982. DOI: 10.1111/j.1471-4159.1991.tb02017.x.
[30]
FEARNLEY J M, LEES A J. Ageing and Parkinson's disease: substantia nigra regional selectivity[J]. Brain, 1991, 114 (Pt 5): 2283-2301. DOI: 10.1093/brain/114.5.2283.
[31]
HUGHES A J, DANIEL S E, KILFORD L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases[J]. J Neurol Neurosurg Psychiatry, 1992, 55(3): 181-184. DOI: 10.1136/jnnp.55.3.181.
[32]
BAGWE-PARAB S, KAUR G. Molecular targets and therapeutic interventions for iron induced neurodegeneration[J]. Brain Res Bull, 2020, 156: 1-9. DOI: 10.1016/j.brainresbull.2019.12.011.
[33]
OHIOMOKHARE S, OLAOLORUN F, LADAGU A, et al. The pathopharmacological interplay between vanadium and iron in Parkinson's disease models[J/OL]. Int J Mol Sci, 2020, 21(18): 6719 [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554808/. DOI: 10.3390/ijms21186719.
[34]
LIMA I S, PÊGO A C, BARROS J T, et al. Cell death-osis of dopaminergic neurons and the role of iron in Parkinson's disease[J]. Antioxid Redox Signal, 2021, 35(6): 453-473. DOI: 10.1089/ars.2020.8229.

PREV Magnetic resonance voxel analysis and diffusion kurtosis imaging of medial temporal lobe in patients with temporal lobe epilepsy and cognitive impairment
NEXT The value of MAP-MRI and DCE-MRI in differentiating glioblastoma from brain metastases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn