Share:
Share this content in WeChat
X
Clinical Article
Multimodal MRI manifestations of high altitude cerebral edema
LONG Changyou  BAO Haihua 

Cite this article as: LONG C Y, BAO H H. Multimodal MRI manifestations of high altitude cerebral edema[J]. Chin J Magn Reson Imaging, 2023, 14(2): 21-26, 55. DOI:10.12015/issn.1674-8034.2023.02.004.


[Abstract] Objective Based on T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fluid attenuated inversion recovery (FLAIR), diffusion weighted imaging (DWI), susceptibility weighted imaging (SWI) and apparent diffusion coefficient (ADC) value, the brain imaging manifestations of high-altitude cerebral edema (HACE) were comprehensively analyzed, and to explore its damage characteristics.Materials and Methods Thirty patients with HACE diagnosed from January 2012 to August 2022 were collected. The general clinical data of the patients were statistically analyzed and classified according to clinical symptoms. Then, all patients underwent multi-sequence (T1WI, T2WI, FLAIR, DWI) MRI examination, among which 9 patients also underwent SWI examination. Finally, the images were analyzed.Results (1) According to the clinical symptoms, 30 cases of HACE were divided into 12 mild cases and 18 severe cases. There was no significant difference in gender, age, leukocyte, neutrophil and glucose content between mild and severe HACE (all P>0.05). (2) The edema range of severe HACE in deep and juxtacortical white matter and corpus callosum was significantly larger than that of mild HACE, and the ADC value in the splenium of corpus callosum was significantly lower than that of mild HACE, and the above differences were statistically significant (P<0.001, P=0.001, P=0.049, respectively). (3) In mild and severe HACE, the signal intensity of DWI was significantly higher than that of conventional MRI sequences (T1WI, T2WI, FLAIR), and the difference was statistically significant (P=0.008, P=0.025, respectively). (4) In severe HACE, 7 cases had obvious bilateral thalamic level corticospinal tract edema (7/18, 38.9%), and SWI showed 5 cases with cerebral microbleeds (CMB), with the corpus callosum as the center (5/9, 55.6%).Conclusions DWI sequence has obvious advantages in the evaluation of HACE. The white matter injury in severe HACE is more severe and extensive than that in mild HACE, especially in corpus callosum, and some of them may also have CMBs and corticospinal tract edema.
[Keywords] high altitude;cerebral edema;cerebral microbleeds;magnetic resonance imaging;diffusion weighted imaging;apparent diffusion coefficient;susceptibility weighted imaging

LONG Changyou   BAO Haihua*  

Image Center, Affiliated Hospital of Qinghai University, Xining 810001, China

*Correspondence to: Bao HH, E-mail: baohelen2@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Construction Project of Provincial Clinical Key Specialty of Qinghai Province.
Received  2022-08-16
Accepted  2023-02-03
DOI: 10.12015/issn.1674-8034.2023.02.004
Cite this article as: LONG C Y, BAO H H. Multimodal MRI manifestations of high altitude cerebral edema[J]. Chin J Magn Reson Imaging, 2023, 14(2): 21-26, 55. DOI:10.12015/issn.1674-8034.2023.02.004.

[1]
BRENT M B. A review of the skeletal effects of exposure to high altitude and potential mechanisms for hypobaric hypoxia-induced bone loss[J/OL]. Bone, 2022, 154: 116258 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/34781048/. DOI: 10.1016/j.bone.2021.116258.
[2]
SAVIOLI G, CERESA I F, GORI G, et al. Pathophysiology and Therapy of High-Altitude Sickness: Practical Approach in Emergency and Critical Care[J/OL]. J Clin Med, 2022, 11(14): 3937 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/35887706/. DOI: 10.3390/jcm11143937.
[3]
TURNER R, GATTERER H, FALLA M, et al. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?[J]. J Appl Physiol (1985), 2021, 131(1): 313-325. DOI: 10.1152/japplphysiol.00861.2019.
[4]
The third National Plateau Medicine Symposium of the Chinese Medical Association. Nomenclature, classification and diagnostic criteria of altitude sickness in China[J]. Journal of High Altitude Medicine, 2010, 20(1): 9-11. DOI: 10.3969/j.issn.1007-3809.2010.01.004.
[5]
ZELMANOVICH R, PIERRE K, FELISMA P, et al. High Altitude Cerebral Edema: Improving Treatment Options[J]. Biologics (Basel), 2022, 2(1): 81-91. DOI: 10.3390/biologics2010007.
[6]
GONZALEZ GARAY A, MOLANO FRANCO D, NIETO ESTRADA V H, et al. Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs[J/OL]. Cochrane Database Syst Rev, 2018, 3(3): CD012983 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/29529715/. DOI: 10.1002/14651858.CD012983.
[7]
NIETO ESTRADA V H, MOLANO FRANCO D, MEDINA R D, et al. Interventions for preventing high altitude illness: Part 1. Commonly-used classes of drugs[J/OL]. Cochrane Database Syst Rev, 2017, 6(6): CD009761 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/28653390/. DOI: 10.1002/14651858.CD009761.pub2.
[8]
KHODAEE M, GROTHE H L, SEYFERT J H, et al. Athletes at High Altitude[J]. Sports Health, 2016, 8(2): 126-132. DOI: 10.1177/1941738116630948.
[9]
TAN J, WANG J W, CHEN H W, et al. Application of MRI in examination of high altitude cerebral edema[J]. Medical Journal of National Defending Forces in Southwest China, 2005, 15(1): 61-62. DOI: 10.3969/j.issn.1004-0188.2005.01.030.
[10]
LI S Z, TAN J, LIU B, et al. Investigation of pulmonary image of high altitude cerebral edema in early stage[J]. Medical Journal of National Defending Forces in Southwest China, 2010, 20(5): 527-529. DOI: 10.3969/j.issn.1004-0188.2010.05.027.
[11]
CHEN H W, WANG J W, LIU J, et al. Magnetic resonance imaging of high altitude cerebral edema[J]. Medical Journal of National Defending Forces in Southwest China, 2006, 16(5): 525-527. DOI: 10.3969/j.issn.1004-0188.2006.05.029.
[12]
HACKETT P H, YARNELL P R, WEILAND D A, et al. Acute and Evolving MRI of High-Altitude Cerebral Edema: Microbleeds, Edema, and Pathophysiology[J]. AJNR Am J Neuroradiol, 2019, 40(3): 464-469. DOI: 10.3174/ajnr.A5897.
[13]
BROKINKEL B, HINRICHS F L, SCHIPMANN S, et al. Predicting postoperative seizure development in meningiomas - Analyses of clinical, histological and radiological risk factors[J/OL]. Clin Neurol Neurosurg, 2021, 200: 106315 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33092928/. DOI: 10.1016/j.clineuro.2020.106315.
[14]
KIM K W, MACFALL J R, PAYNE M E. Classification of white matter lesions on magnetic resonance imaging in elderly persons[J]. Biol Psychiatry, 2008, 64(4): 273-280. DOI: 10.1016/j.biopsych.2008.03.024.
[15]
HACKETT P H, YARNELL P R, HILL R, et al. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology[J]. JAMA, 1998, 280(22): 1920-1925. DOI: 10.1001/jama.280.22.1920.
[16]
MEDHI G, LACHUNGPA T, SAINI J. Neuroimaging features of fatal high-altitude cerebral edema[J]. Indian J Radiol Imaging, 2018, 28(4): 401-405. DOI: 10.4103/ijri.IJRI_296_18.
[17]
BURTSCHER J, MALLET R T, BURTSCHER M, et al. Hypoxia and brain aging: Neurodegeneration or neuroprotection?[J/OL]. Ageing Res Rev, 2021, 68: 101343 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33862277/. DOI: 10.1016/j.arr.2021.101343.
[18]
MA J, WANG C, SUN Y, et al. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia[J/OL]. Int J Pharm, 2020, 591: 120002 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33141084/. DOI: 10.1016/j.ijpharm.2020.120002.
[19]
SHAW D M, CABRE G, GANT N. Hypoxic Hypoxia and Brain Function in Military Aviation: Basic Physiology and Applied Perspectives[J/OL]. Front Physiol, 2021, 12: 665821 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/34093227/. DOI: 10.3389/fphys.2021.665821.
[20]
URUSHIDA Y, KIKUCHI Y, SHIMIZU C, et al. Improved Neuroimaging Findings and Cognitive Function in a Case of High-altitude Cerebral Edema[J]. Intern Med, 2021, 60(8): 1299-1302. DOI: 10.2169/internalmedicine.5747-20.
[21]
HALLER S, VERNOOIJ M W, KUIJER J, et al. Cerebral Microbleeds: Imaging and Clinical Significance[J]. Radiology, 2018, 287(1): 11-28. DOI: 10.1148/radiol.2018170803.
[22]
WARDLAW J M, SMITH E E, BIESSELS G J, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
[23]
WANG H L, ZHANG C L, QIU Y M, et al. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench[J]. Aging Dis, 2021, 12(8): 1898-1919. DOI: 10.14336/AD.2021.0514.
[24]
GUO X, WANG N, WU L E. Research progress of cerebral microbleeds and cognitive impairment[J]. Journal of Internal Medicine Concepts & Practice, 2020, 15(3): 152-155. DOI: 10.16138/j.1673-6087.2020.03.004.
[25]
LITAK J, MAZUREK M, KULESZA B, et al. Cerebral Small Vessel Disease[J/OL]. Int J Mol Sci, 2020, 21(24): 9729 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33419271/. DOI: 10.3390/ijms21249729.
[26]
AKOUDAD S, WOLTERS F J, VISWANATHAN A, et al. Association of Cerebral Microbleeds With Cognitive Decline and Dementia[J]. JAMA Neurol, 2016, 73(8): 934-943. DOI: 10.1001/jamaneurol.2016.1017.
[27]
VAN AGTMAAL M, HOUBEN A, POUWER F, et al. Association of Microvascular Dysfunction With Late-Life Depression: A Systematic Review and Meta-analysis[J]. JAMA Psychiatry, 2017, 74(7): 729-739. DOI: 10.1001/jamapsychiatry.2017.0984.
[28]
DING J, SIGURDSSON S, GARCIA M, et al. Risk Factors Associated With Incident Cerebral Microbleeds According to Location in Older People: The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study[J]. JAMA Neurol, 2015, 72(6): 682-688. DOI: 10.1001/jamaneurol.2015.0174.
[29]
PUY L, PASI M, RODRIGUES M, et al. Cerebral microbleeds: from depiction to interpretation[J/OL]. J Neurol Neurosurg Psychiatry, 2021: jnnp-2020-323951 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33563804/. DOI: 10.1136/jnnp-2020-323951.
[30]
HOFFMANN A, KUNZE R, HELLUY X, et al. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb[J/OL]. PLoS One, 2016, 11(2): e0148441 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/26863147/. DOI: 10.1371/journal.pone.0148441.
[31]
PICHLER HEFTI J, HOIGNÉ-PERRET P, KOTTKE R. Extensive Microhemorrhages of the Cerebellar Peduncles After High-Altitude Cerebral Edema[J]. High Alt Med Biol, 2017, 18(2): 182-184. DOI: 10.1089/ham.2016.0103.
[32]
LU S, LIU S, WANG S H, et al. Cerebral Microbleed Detection via Convolutional Neural Network and Extreme Learning Machine[J/OL]. Front Comput Neurosci, 2021, 15: 738885 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/34566615/. DOI: 10.3389/fncom.2021.738885.

PREV The value of MAP-MRI and DCE-MRI in differentiating glioblastoma from brain metastases
NEXT Diagnosis of neonatal bilirubin encephalopathy based on quantitative analysis of multiparameter magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn