Share:
Share this content in WeChat
X
Clinical Article
Diagnosis of neonatal bilirubin encephalopathy based on quantitative analysis of multiparameter magnetic resonance imaging
TAN Weiting  LUO Yi  SUN Weisheng  ZHUANG Yijiang  ZHANG Shaojun  ZHAO Yilin  ZENG Hongwu 

Cite this article as: TAN W T, LUO Y, SUN W S, et al. Diagnosis of neonatal bilirubin encephalopathy based on quantitative analysis of multiparameter magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(2): 27-32. DOI:10.12015/issn.1674-8034.2023.02.005.


[Abstract] Objective To explore the value and optimal parameters of quantitative analysis of globus pallidus (GP), putamen(P) and thalamus (T) signal intensity on T1WI, T2WI, and apparent diffusion coefficient (ADC) images for the early diagnosis of neonatal bilirubin encephalopathy (NBE).Materials and Methods We collected the clinical and imaging data of full-term NBE children from January 2018 to July 2022 in Shenzhen Children's Hospital, and age- and gender-matched normal neonates were selected as controls. The software measureed the signal intensity ​​of GP, P and T. Two independent samples t test was used to compare and analyze the signal intensity ​​of GP, T, the ratio of GP to P on T1WI, T2WI, ADC (GP/P1, GP/P2, GP/PA) and the ratio of T to P on T1WI, T2WI, ADC (T/P1, T/P2, T/PA); We analyzed the receiver operating characteristic (ROC) curve to find the optimal MRI parameters for the diagnosis of NBE. According to the scores of bilirubin induced neurological dysfunction, children with NBE were divided into three groups: mild, moderate and severe, one-way analysis of variance was used to compare and analyze the differences among the three groups of NBE children.Results There were 60 children with NBE, 22 were mild, 24 were moderate, 14 were severe, and 31 were in the normal control group. The results of two independent samples t test showed that: in T1WI images, the GP and T signal intensity ​​and ratios (GP/P1, T/P1) were higher than those in the normal control group, and the differences were statistically significant (P<0.010); in T2WI and ADC images, GP, T signal intensity ​​and ratios (GP/P2, T/P2, GP/PA, T/PA) were not significantly different (P>0.05). The ROC curve analysis showed that the area under the curve (AUC) of GP and T signal intensity ​​in T1WI images were 0.785, 0.870, respectively, and the optimal critical threshold was 267.83 and 295.17, respectively; the AUC of G/P1 and T/P1 in T1WI images was 0.794 and 0.756, and the optimal critical threshold was 1.41, 1.13, respectively. One-way analysis of variance showed that the higher the clinical severity of NBE, the higher the GP and T signal intensity ​​in T1WI images, and the higher the GP/P1 and T/P1 ratios.Conclusions Quantitative analysis of magnetic resonance signal intensity based on T1WI images can diagnose NBE early and objectively. The signal intensity ​​of GP and T and the ratio of GP/P1 and T/P1 on T1WI images can be the optimal MRI parameters to diagnose NBE early and accurately and grade the severity of NBE dynamically. Also, above parameters provide objective imaging evidence for clinical diagnosis and treatment of NBE.
[Keywords] neonatal;bilirubin encephalopathy;magnetic resonance imaging;early diagnosis;severity grading

TAN Weiting1, 2   LUO Yi1, 3   SUN Weisheng1, 3   ZHUANG Yijiang1   ZHANG Shaojun1, 3   ZHAO Yilin1, 2   ZENG Hongwu1*  

1 Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China

2 Department of Radiology, Shenzhen Children's Hospital of China Medical University, Shenzhen 518038, China

3 Shantou University Medical College, Shantou 515041, China

*Correspondence to: Zeng HW, E-mail: homerzeng@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Guangdong Province (No. 2022A1515011427); "Sanming Project" of Medicine in Shenzhen (No. SZSM202011005).
Received  2022-09-26
Accepted  2023-01-12
DOI: 10.12015/issn.1674-8034.2023.02.005
Cite this article as: TAN W T, LUO Y, SUN W S, et al. Diagnosis of neonatal bilirubin encephalopathy based on quantitative analysis of multiparameter magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(2): 27-32. DOI:10.12015/issn.1674-8034.2023.02.005.

[1]
SUN X F, WEI Q F, LI Z K, et al. Total serum bilirubin and bilirubin to albumin values in predicting neonatal acute bilirubin encephalopathy: a multicenter study[J]. Chin J Neonatol, 2022, 37(1): 25-29. DOI: 10.3760/cma.j.issn.2096-2932.2022.01.007.
[2]
ANDERSON N B, CALKINS K L. Neonatal indirect hyperbilirubinemia[J/OL]. NeoReviews, 2020, 21(11): e749-e760 [2022-07-28]. https://pubmed.ncbi.nlm.nih.gov/33139512/. DOI: 10.1542/neo.21-11-e749.
[3]
LI Q Q, DENG X Y, YAN J M, et al. Neonatal Severe Hyperbilirubinemia Online Registry in Jiangsu Province: protocol for a multicentre, prospective, open, observational cohort study[J/OL]. BMJ Open, 2021, 11(2): e040797 [2022-06-12]. https://pubmed.ncbi.nlm.nih.gov/33550236/. DOI: 10.1136/bmjopen-2020-040797.
[4]
WANG Y, SHENG G Y, SHI L N, et al. Increased serum total bilirubin-albumin ratio was associated with bilirubin encephalopathy in neonates[J/OL]. Biosci Rep, 2020, 40(1): BSR20192152 [2022-07-12]. https://pubmed.ncbi.nlm.nih.gov/31950971/. DOI: 10.1042/BSR20192152.
[5]
MENG X L, ZHANG L, WANG X H, et al. Analysis of MRI signal characteristics of neonatal severe hyperbilirubinemia[J]. Chin J Magn Reson Imaging, 2018, 9(10): 768-772. DOI: 10.12015/issn.1674-8034.2018.10.010.
[6]
BRITES D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation[J/OL]. Front Pharmacol, 2012, 3: 88 [2022-07-14]. https://pubmed.ncbi.nlm.nih.gov/22661946/. DOI: 10.3389/fphar.2012.00088.
[7]
BARATEIRO A, MIRON V E, SANTOS S D, et al. Unconjugated bilirubin restricts oligodendrocyte differentiation and axonal myelination[J]. Mol Neurobiol, 2013, 47(2): 632-644. DOI: 10.1007/s12035-012-8364-8.
[8]
ZHENG H Y, LIN J F, LIN Q H, et al. Magnetic resonance image of neonatal acute bilirubin encephalopathy: a diffusion kurtosis imaging study[J/OL]. Front Neurol, 2021, 12: 645534 [2022-06-13]. https://pubmed.ncbi.nlm.nih.gov/34512498/. DOI: 10.3389/fneur.2021.645534.
[9]
BHUTANI V K, JOHNSON-HAMERMAN L. The clinical syndrome of bilirubin-induced neurologic dysfunction[J]. Semin Fetal Neonatal Med, 2015, 20(1): 6-13. DOI: 10.1016/j.siny.2014.12.008.
[10]
YI M G, JIANG Z Q, ZHAO J S, et al. The value of T1WI signal intensity ratio of globus pallidus to putamen in grading and predicting prognosis of neonatal acute bilirubin encephalopathy[J]. Chin J Radiol, 2017, 51(3): 214-218. DOI: 10.3760/cma.j.issn.1005-1201.2017.03.013.
[11]
BAHR T M, CHRISTENSEN R D, AGARWAL A M, et al. The neonatal acute bilirubin encephalopathy registry (NABER): background, aims, and protocol[J]. Neonatology, 2019, 115(3): 242-246. DOI: 10.1159/000495518.
[12]
Neonatology Group of Pediatrics Association of Chinese Medical Association. Expert consensus on diagnosis and treatment of neonatal hyperbilirubinemia[J]. Chin J Pediatr, 2014, 52(10): 745-748. DOI: 10.3760/cma.j.issn.0578-1310.2014.10.006.
[13]
WU M, SHEN X X, LAI C, et al. Detecting acute bilirubin encephalopathy in neonates based on multimodal MRI with deep learning[J]. Pediatr Res, 2022, 91(5): 1168-1175. DOI: 10.1038/s41390-021-01560-0.
[14]
JI P, YUAN X Y. The value of the ratio of magnetic resonance signal of globus pallidus to nucleus putamen in the diagnosis of neonatal bilirubin encephalopathy[J]. J Pract Med Imaging, 2021, 22(5): 469-471. DOI: 10.16106/j.cnki.cn14-1281/r.2021.05.012.
[15]
WU M, SHEN X X, LAI C, et al. Detecting neonatal acute bilirubin encephalopathy based on T1-weighted MRI images and learning-based approaches[J/OL]. BMC Med Imaging, 2021, 21(1): 103 [2022-06-20]. https://pubmed.ncbi.nlm.nih.gov/34158001/. DOI: 10.1186/s12880-021-00634-z.
[16]
LU Z X, DING S L, WANG F, et al. Analysis on the MRI and BAEP results of neonatal brain with different levels of bilirubin[J/OL]. Front Pediatr, 2021, 9: 719370 [2022-07-23]. https://pubmed.ncbi.nlm.nih.gov/35174111/. DOI: 10.3389/fped.2021.719370.
[17]
LI W K, LIU H G, LU S, et al. Diagnostic value of conventional MRI combined with diffusion-weighted imaging in neonatal bilirubin encephalopathy[J]. Clin J Med Off, 2021, 49(3): 347-349. DOI: 10.16680/j.1671-3826.2021.03.41.
[18]
BHUTANI V K, JOHNSON L H, KEREN R. Diagnosis and management of hyperbilirubinemia in the term neonate: for a safer first week[J]. Pediatr Clin North Am, 2004, 51(4): 843-861, vii. DOI: 10.1016/j.pcl.2004.03.011.
[19]
OLUSANYA B O, KAPLAN M, HANSEN T W R. Neonatal hyperbilirubinaemia: a global perspective[J]. Lancet Child Adolesc Health, 2018, 2(8): 610-620. DOI: 10.1016/S2352-4642(18)30139-1.
[20]
PRANTY A I, SHUMKA S, ADJAYE J. Bilirubin-induced neurological damage: current and emerging iPSC-derived brain organoid models[J/OL]. Cells, 2022, 11(17): 2647 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/36078055/. DOI: 10.3390/cells11172647.
[21]
XU K, LEI J Q. Research progress on pathogenesis and magnetic resonance diagnosis of neonatal bilirubin encephalopathy[J]. Chin J CT MRI, 2019, 17(1): 141-145. DOI: 10.3969/j.issn.1672-5131.2019.01.043.
[22]
CAI Y H, CHEN M. Clinical significance of changes in brain MRI features of neonatal acute bilirubin encephalopathy[J]. China Pract Med, 2018, 13(18): 37-38. DOI: 10.14163/j.cnki.11-5547/r.2018.18.018.
[23]
CAO J, LIU G Y, LI L, et al. Magnetic resonance imaging for early diagnosis of neonatal bilirubin encephalopathy[J]. Chin J Magn Reson Imaging, 2019, 10(4): 303-307. DOI: 10.12015/issn.1674-8034.2019.04.013.
[24]
LIU G, PENG H B, XIAO Z B, et al. The clinical significance of globus pallidus MRI signal intensity in the early identification of neonatal bilirubin encephalopathy[J]. Chin J Neonatol, 2020, 35(1): 10-15. DOI: 10.3760/cma.j.issn.2096-2932.2020.01.004.
[25]
ZHANG L, GAO J, ZHAO Y B, et al. The application of magnetic resonance imaging and diffusion-weighted imaging in the diagnosis of hypoxic-ischemic encephalopathy and kernicterus in premature infants[J]. Transl Pediatr, 2021, 10(4): 958-966. DOI: 10.21037/tp-21-128.
[26]
YAN R F, HAN D M, REN J P, et al. Diagnostic value of conventional MRI combined with DTI for neonatal hyperbilirubinemia[J]. Pediatr Neonatol, 2018, 59(2): 161-167. DOI: 10.1016/j.pedneo.2017.07.009.
[27]
CECE H, ABUHANDAN M, CAKMAK A, et al. Diffusion-weighted imaging of patients with neonatal bilirubin encephalopathy[J]. Jpn J Radiol, 2013, 31(3): 179-185. DOI: 10.1007/s11604-012-0166-4.
[28]
LIU Z, JI B, ZHANG Y Z, et al. Machine learning assisted MRI characterization for diagnosis of neonatal acute bilirubin encephalopathy[J/OL]. Front Neurol, 2019, 10: 1018 [2022-06-21]. https://pubmed.ncbi.nlm.nih.gov/31632332/. DOI: 10.3389/fneur.2019.01018.
[29]
ZHANG Z, MA Y Q, ZHANG J Y, et al. Predictive value of head magnetic resonance G/P and GP/CSF values in the early stage of neonatal acute bilirubin encephalopathy[J]. J Clin Radiol, 2022, 41(2): 325-329. DOI: 10.13437/j.cnki.jcr.2022.02.006.
[30]
LU P M, YIN J Y, SHEN W, et al. The value of MRI signal ratio of globus pallidus to putamen in early diagnosis of acute bilirubin encephalopathy in full-term neonates[J]. J Youjiang Med Univ Natl, 2019, 41(6): 621-624. DOI: 10.3969/j.issn.1001-5817.2019.06.006.

PREV Multimodal MRI manifestations of high altitude cerebral edema
NEXT Functional connectivity of the primary visual cortex in patients with comitant exotropia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn