Share:
Share this content in WeChat
X
Clinical Article
Functional connectivity of the primary visual cortex in patients with comitant exotropia
CHEN Wanyun  JIN Han 

Cite this article as: CHEN W Y, JIN H. Functional connectivity of the primary visual cortex in patients with comitant exotropia[J]. Chin J Magn Reson Imaging, 2023, 14(2): 33-36, 102. DOI:10.12015/issn.1674-8034.2023.02.006.


[Abstract] Objective Based on the resting state functional connection (RSFC) method, this study studied the functional connectivity of primary visual cortex (V1) in patients with concomitant exotropia (CE).Materials and Methods The clinical data of 24 CE patients (CE group) and 24 healthy controls (HC group) matched for sex and age with the CE group were retrospectively analyzed, patients in both groups were scanned by 3.0 T MRI. The functional connection (FC) of the V1 of the two groups were analyzed by RSFC method, and the differences of FC of V1 between the two groups were compared by double sample t test.Results Compared with the healthy control group, there was no significant difference in sex and age between the two groups (P>0.05). The FC between bilateral V1 and Cerebelum_7b_L was enhanced in CE group (GRF correction, voxel level P<0.001, cluster level P<0.05).Conclusions The enhancement of FC between bilateral V1 and the lower cerebellum in patients with CE may provide a reference for the neuropathological mechanism of binocular visual impairment in patients with CE.
[Keywords] comitant exotropia;magnetic resonance imaging;resting state functional magnetic resonance imaging;functional connectivity;primary visual cortex;spontaneous activity

CHEN Wanyun1, 2   JIN Han2*  

1 Medical College of Nanchang University, Nanchang 330000, China

2 Department of Ophthalmology, Jiangxi Provincial People's Hospital (the First Affiliated Hospital of Nanchang Medical College), Nanchang 330000, China

*Correspondence to: Jin H, E-mail: jinhan0791@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Jiangxi Province (No. 20212BAB216058).
Received  2022-07-08
Accepted  2023-01-17
DOI: 10.12015/issn.1674-8034.2023.02.006
Cite this article as: CHEN W Y, JIN H. Functional connectivity of the primary visual cortex in patients with comitant exotropia[J]. Chin J Magn Reson Imaging, 2023, 14(2): 33-36, 102. DOI:10.12015/issn.1674-8034.2023.02.006.

[1]
HASHEMI H, YEKTA A, JAFARZADEHPUR E, et al. The prevalence of strabismus in 7-year-old schoolchildren in Iran[J]. Strabismus, 2015, 23(1): 1-7. DOI: 10.3109/09273972.2014.999795.
[2]
YAN X, LIN X. Postoperative Stereopsis in Adult Patients With Horizontal Comitant Strabismus With Normal Vision Who Are Stereoblind[J]. J Pediatr Ophthalmol Strabismus, 2018, 55(6): 407-411. DOI: 10.3928/01913913-20180822-01.
[3]
SCHOLL B, TAN A Y, PRIEBE N J. Strabismus disrupts binocular synaptic integration in primary visual cortex[J]. J Neurosci, 2013, 33(43): 17108-17122. DOI: 10.1523/JNEUROSCI.1831-13.2013.
[4]
ADAMS D L, ECONOMIDES J R, SINCICH L C, et al. Cortical metabolic activity matches the pattern of visual suppression in strabismus[J]. J Neurosci, 2013, 33(9): 3752-3759. DOI: 10.1523/JNEUROSCI.3228-12.2013.
[5]
LI Q, BAI J, ZHANG J, et al. Assessment of Cortical Dysfunction in Patients with Intermittent Exotropia: An fMRI Study[J/OL]. PLoS One, 2016, 11(8): e0160806 [2022-07-20]. https://doi.org/10.1371/journal.pone.0160806. DOI: 10.1371/journal.pone.0160806.
[6]
XI S, YAO J, ZHANG S, et al. Disrupted neural signals in patients with concomitant exotropia[J]. Ophthalmic Physiol Opt, 2020, 40(5):650-659. DOI: 10.1111/opo.12715.
[7]
PENG J, YAO F, LI Q, et al. Alternations of interhemispheric functional connectivity in children with strabismus and amblyopia: a resting-state fMRI study[J/OL]. Sci Rep, 2021, 11(1): 15059 [2022-07-20]. https://doi.org/10.1038/s41598-021-92281-1. DOI: 10.1038/s41598-021-92281-1.
[8]
SHI Y D, GE Q M, LIN Q, et al. Functional connectivity density alterations in children with strabismus and amblyopia based on resting-state functional magnetic resonance imaging (fMRI)[J/OL]. BMC Ophthalmol, 2022, 22(1): 49 [2022-07-20]. https://doi.org/10.1186/s12886-021-02228-3. DOI: 10.1186/s12886-021-02228-3.
[9]
SU T, YUAN Q, LIAO X L, et al. Altered intrinsic functional connectivity of the primary visual cortex in patients with retinal vein occlusion: a resting-state fMRI study[J]. Quant Imaging Med Surg, 2020, 10(5): 958-969. DOI: 10.21037/qims.2020.03.24.
[10]
WU Y Y, WANG S F, ZHU P W, et al. Altered Intrinsic Functional Connectivity of the Primary Visual Cortex in Patients with Neovascular Glaucoma: A Resting-State Functional Magnetic Resonance Imaging Study[J]. Neuropsychiatr Dis Treat, 2020, 16: 25-33. DOI: 10.2147/NDT.S228606.
[11]
HU S L, TANG L Y, FANG J W, et al. Altered Intrinsic Functional Connectivity of the Primary Visual Cortex in Patients with Corneal Ulcer: A Resting-State fMRI Study[J]. Neuropsychiatr Dis Treat, 2020, 16: 1571-1581. DOI: 10.2147/NDT.S238463.
[12]
YAN X, WANG Y, XU L, et al. Altered Functional Connectivity of the Primary Visual Cortex in Adult Comitant Strabismus: A Resting-State Functional MRI Study[J]. Curr Eye Res, 2019, 44(3): 316-323. DOI: 10.1080/02713683.2018.1540642.
[13]
ZHU P W, HUANG X, YE L, et al. Altered intrinsic functional connectivity of the primary visual cortex in youth patients with comitant exotropia: a resting state fMRI study[J]. Int J Ophthalmol, 2018, 11(4): 668-673. DOI: 10.18240/ijo.2018.04.22.
[14]
HE X, HONG J, WANG Q, et al. Altered Spontaneous Brain Activity Patterns and Functional Connectivity in Adults With Intermittent Exotropia: A Resting-State fMRI Study[J/OL]. Front Neurol, 2021, 12: 746882 [2022-07-20]. https://doi.org/10.3389/fneur.2021.638402. DOI: 10.3389/fneur.2021.638402.
[15]
Strabismus and Pediatric Ophthalmology Group, Ophthalmology Branch of Chinese Medical Association. Consensus of experts on strabismus classification in China (2015)[J]. Chin J Ophthalmol, 2015, 51(6): 408-410. DOI: 10.3760/cma.j.issn.0412-4081.2015.06.003.
[16]
TAN G, DAN Z R, ZHANG Y, et al. Altered brain network centrality in patients with adult comitant exotropia strabismus: A resting-state fMRI study[J]. J Int Med Res, 2018, 46(1): 392-402. DOI: 10.1177/0300060517715340.
[17]
OUYANG J, YANG L, HUANG X, et al. The atrophy of white and gray matter volume in patients with comitant strabismus: Evidence from a voxel-based morphometry study[J]. Mol Med Rep, 2017, 16(3): 3276-3282. DOI: 10.3892/mmr.2017.7006.
[18]
TAN G, HUANG X, ZHANG Y, et al. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation[J]. Neuropsychiatr Dis Treat, 2016, 12: 1243-1250. DOI: 10.2147/NDT.S104756.
[19]
HAYAKAWA Y, NAKAJIMA T, TAKAGI M, et al. Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study[J]. Ophthalmologica, 2002, 216(6): 399-405. DOI: 10.1159/000067551.
[20]
HERZFELD D J, KOJIMA Y, SOETEDJO R, et al. Encoding of action by the Purkinje cells of the cerebellum[J]. Nature, 2015, 526(7573): 439-442. DOI: 10.1038/nature15693.
[21]
JOSHI A C, DAS V E. Muscimol inactivation of caudal fastigial nucleus and posterior interposed nucleus in monkeys with strabismus[J]. J Neurophysiol, 2013, 110(8): 1882-1891. DOI: 10.1152/jn.00233.2013.
[22]
THIER P, MARKANDAY A. Role of the Vermal Cerebellum in Visually Guided Eye Movements and Visual Motion Perception[J]. Annu Rev Vis Sci, 2019, 5: 247-268. DOI: 10.1146/annurev-vision-091718-015000.
[23]
MASCHKE M, GOMEZ C M, TUITE P J, et al. Depth perception in cerebellar and basal ganglia disease[J]. Exp Brain Res, 2006, 175(1): 165-176. DOI: 10.1007/s00221-006-0535-2.
[24]
KELLERMANN T, REGENBOGEN C, DE VOS M, et al. Effective connectivity of the human cerebellum during visual attention[J]. J Neurosci, 2012, 32(33): 11453-11460. DOI: 10.1523/JNEUROSCI.0678-12.2012.
[25]
LINDEMAN S, HONG S, KROS L, et al. Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(2): e2015292118 [2022-07-20]. https://doi.org/10.1073/pnas.2015292118. DOI: 10.1073/pnas.2015292118.
[26]
VAN ES D M, VAN DER ZWAAG W, KNAPEN T. Topographic Maps of Visual Space in the Human Cerebellum[J]. Curr Biol, 2019, 29(10): 1689-1694. DOI: 10.1016/j.cub.2019.04.012.
[27]
MAREK S, SIEGEL J S, GORDON E M, et al. Spatial and Temporal Organization of the Individual Human Cerebellum[J]. Neuron, 2018, 100(4): 977-993. DOI: 10.1016/j.neuron.2018.10.010.
[28]
XUE A, KONG R, YANG Q, et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual[J]. J Neurophysiol, 2021, 125(2): 358-384. DOI: 10.1152/jn.00561.2020.

PREV Diagnosis of neonatal bilirubin encephalopathy based on quantitative analysis of multiparameter magnetic resonance imaging
NEXT Differential diagnostic value of IVIM combining with dynamic enhanced MRI in non-mass enhancement adenosis and breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn