Share:
Share this content in WeChat
X
Review
Research progress of MRI-based texture analysis in high-grade gliomas
ZHANG Yurou  HUA Yifan  ZHU Xinyu  HUANG Peng  GUO Li 

Cite this article as: ZHANG Y R, HUA Y F, ZHU X Y, et al. Research progress of MRI-based texture analysis in high-grade gliomas[J]. Chin J Magn Reson Imaging, 2023, 14(2): 174-178. DOI:10.12015/issn.1674-8034.2023.02.031.


[Abstract] High-grade gliomas, defined by WHO as grade Ⅲ and Ⅳ gliomas, are among the most common primary malignancies in adults. Compared with grade Ⅲ gliomas, grade Ⅳ gliomas are more malignant than grade Ⅲ gliomas, have a shorter median survival, and are less effective with drug therapy. MRI plays an important role in disease detection, diagnosis, treatment, and prognostic evaluation, but conventional MRI is highly dependent on the subjectivity of the imaging physician for staging, identification, and prognostic evaluation and is therefore of limited value.MRI-based texture analysis can acquire some imaging features that cannot be identified by the naked eye by obtaining information on the signal and distribution of each pixel in the image, which in turn can help in the diagnosis, treatment, and prognosis assessment of the lesion. To this end, this paper reviews the application of MRI-based texture analysis in the diagnosis and differential diagnosis, guiding treatment, and prognostic assessment of high-grade gliomas to enable precise treatment of patients.
[Keywords] glioma;high-grade glioma;texture analysis;magnetic resonance imaging

ZHANG Yurou   HUA Yifan   ZHU Xinyu   HUANG Peng   GUO Li*  

Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China

*Correspondence to: Guo L, E-mail: guolidoc@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Medical Discipline Leaders Training Program of Yunnan Provincial Health Commission (No. D-2019024).
Received  2022-08-17
Accepted  2023-01-29
DOI: 10.12015/issn.1674-8034.2023.02.031
Cite this article as: ZHANG Y R, HUA Y F, ZHU X Y, et al. Research progress of MRI-based texture analysis in high-grade gliomas[J]. Chin J Magn Reson Imaging, 2023, 14(2): 174-178. DOI:10.12015/issn.1674-8034.2023.02.031.

[1]
KOMORI T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision[J]. Neurol Med Chir (Tokyo), 2017, 57(7): 301-311. DOI: 10.2176/nmc.ra.2017-0010.
[2]
OSTROM Q T, GITTLEMAN H, TRUITT G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015[J]. Neuro Oncol, 2018, 20(suppl_4): iv1-iv86. DOI: 10.1093/neuonc/noy131.
[3]
Compilation group of "Chinese Guidelines for the Diagnosis and Treatment of Glioma of the Central Nervous System". Guidelines for the diagnosis and treatment of glioma of the central nervous system in China (2015)[J]. Natl Med J China, 2016, 96(7): 485-509. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.003.
[4]
STUPP R, BRADA M, VAN DEN BENT M J, et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2014, 25(Suppl 3): ii93-ii101. DOI: 10.1093/annonc/mdu050.
[5]
LIU L, KUANG G Y. A review of image texture feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4): 622-635. DOI: 10.11834/jig.20090409.
[6]
ZHANG S Y, CHEN F. Advances in quantitative imaging evaluation of tumor spatial heterogeneity[J]. Chin J Radiat Oncol, 2017, 26(12): 1451-1456. DOI: 10.3760/cma.j.issn.1004-4221.2017.12.021.
[7]
GHALATI M K, NUNES A, FERREIRA H, et al. Texture Analysis and Its Applications in Biomedical Imaging: A Survey[J]. IEEE Reviews in Biomedical Engineering, 2022, 15: 222-246. DOI: 10.1109/RBME.2021.3115703.
[8]
LIU L, ZHAO L J, GUO C Y, et al. Research progress and prospect of image texture classification methods[J]. Acta Automatica Sinica, 2018, 44(4): 584-607. DOI: 10.16383/j.aas.2018.c160452.
[9]
CHEN B, CHEN C, WANG J, et al. Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques[J/OL]. Front Oncol, 2021, 11: 521313 [2022-08-23], https://pubmed.ncbi.nlm.nih.gov/34141605/. DOI: 10.3389/fonc.2021.521313.
[10]
ORTIZ-RAMÓN R, RUIZ-ESPAÑA S, MOLLÁ -OLMOS E, et al. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach[J]. Phys Med, 2020, 76: 44-54. DOI: 10.1016/j.ejmp.2020.06.016.
[11]
YU Y, WU X, CHEN J, et al. Characterizing Brain Tumor Regions Using Texture Analysis in Magnetic Resonance Imaging[J/OL]. Front Neurosci, 2021, 15: 634926 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/34149343/. DOI: 10.3389/fnins.2021.634926.
[12]
LARUE R T H M, DEFRAENE G, DE RUYSSCHER D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures[J/OL]. Br J Radiol, 2017, 90(1070): 20160665 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/27936886/. DOI: 10.1259/bjr.20160665.
[13]
PARMAR C, RIOS VELAZQUEZ E, LEIJENAAR R, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation[J/OL]. PLoS One, 2014, 9(7): e102107 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/25025374/. DOI: 10.1371/journal.pone.0102107.
[14]
PARK J E, HAM S, KIM H S, et al. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma[J]. Eur Radiol, 2021, 31(5): 3127-3137. DOI: 10.1007/s00330-020-07414-3.
[15]
KIM J Y, PARK J E, JO Y, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients[J]. Neuro Oncol, 2019, 21(3): 404-414. DOI: 10.1093/neuonc/noy133.
[16]
WANG P P, SONG M L, ZHANG W H, et al. Robustness of MRI texture features in glioma[J]. Chin J Med Imaging, 2021, 29(5): 519-524. DOI: 10.3969/j.issn.1005-5185.2021.05.024.
[17]
HAINC N, STIPPICH C, STIELTJES B, et al. Experimental Texture Analysis in Glioblastoma: A Methodological Study[J]. Invest Radiol, 2017, 52(6): 367-373. DOI: 10.1097/RLI.0000000000000354.
[18]
HU L S, NING S, ESCHBACHER J M, et al. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma[J/OL]. PLoS One, 2015, 10(11): e0141506 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/26599106. DOI: 10.1371/journal.pone.0141506.
[19]
MAHMOUD-GHONEIM D, TOUSSAINT G, CONSTANS J M, et al. Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas[J]. Magn Reson Imaging, 2003, 21(9): 983-987. DOI: 10.1016/s0730-725x(03)00201-7.
[20]
CHIU F Y, YEN Y. Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach[J/OL]. Cancers (Basel), 2022, 14(6) [2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/35326626. DOI: 10.3390/cancers14061475.
[21]
GARCIA C R, SLONE S A, DOLECEK T A, et al. Primary central nervous system tumor treatment and survival in the United States, 2004-2015[J]. J Neurooncol, 2019, 144(1): 179-191. DOI: 10.1007/s11060-019-03218-8.
[22]
LI J, NIU X, GAN Y, et al. Clinical and Pathologic Features and Prognostic Factors for Recurrent Gliomas[J/OL]. World Neurosurg, 2019, 128: e21-e30 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/30880199. DOI: 10.1016/j.wneu.2019.02.210.
[23]
NAKAMOTO T, TAKAHASHI W, HAGA A, et al. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis[J/OL]. Sci Rep, 2019, 9(1): 19411 [2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/31857632/. DOI: 10.1038/s41598-019-55922-0.
[24]
RYU Y J, CHOI S H, PARK S J, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity[J/OL]. PLoS One, 2014, 9(9): e108335 [2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/25268588. DOI: 10.1371/journal.pone.0108335.
[25]
LIU Y Y Q, SHANG J, TIAN S Y, et al. Identification of grade Ⅱ and grade Ⅲ gliomas using histograms of tumor global apparent diffusion coefficient signal intensities[J]. Chin J Magn Reson Imaging, 2017, 8(4): 276-282. DOI: 10.12015/issn.1674-8034.2017.04.008.
[26]
XIE T, CHEN X, FANG J, et al. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading[J]. J Magn Reson Imaging, 2018, 47(4): 1099-1111. DOI: 10.1002/jmri.25835.
[27]
TIAN Q, YAN L F, ZHANG X, et al. Radiomics strategy for glioma grading using texture features from multiparametric MRI[J]. J Magn Reson Imaging, 2018, 48(6): 1518-1528. DOI: 10.1002/jmri.26010.
[28]
YANG Y, YAN L F, ZHANG X, et al. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma[J]. J Magn Reson Imaging, 2019, 49(5): 1263-1274. DOI: 10.1002/jmri.26524.
[29]
SHA Z, SONG Y, WU Y, et al. The value of texture analysis in peritumoral edema of differentiating diagnosis between glioblastoma and primary brain lymphoma[J]. Br J Neurosurg, 2020: 1-4. DOI: 10.1080/02688697.2020.1856783.
[30]
VERMA R K, WIEST R, LOCHER C, et al. Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study[J]. Med Phys, 2017, 44(8): 4000-4008. DOI: 10.1002/mp.12356.
[31]
KUNIMATSU A, KUNIMATSU N, YASAKA K, et al. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma[J]. Magn Reson Med Sci, 2019, 18(1): 44-52. DOI: 10.2463/mrms.mp.2017-0178.
[32]
ZHANG G, CHEN X, ZHANG S, et al. Discrimination Between Solitary Brain Metastasis and Glioblastoma Multiforme by Using ADC-Based Texture Analysis: A Comparison of Two Different ROI Placements[J]. Acad Radiol, 2019, 26(11): 1466-1472. DOI: 10.1016/j.acra.2019.01.010.
[33]
DASTMALCHIAN S, KILINC O, ONYEWADUME L, et al. Radiomic analysis of magnetic resonance fingerprinting in adult brain tumors[J]. Eur J Nucl Med Mol Imaging, 2021, 48(3): 683-693. DOI: 10.1007/s00259-020-05037-w.
[34]
XU X D, LIANG F R, WEI R L, et al. Identification of high-grade glioma and solitary brain metastases based on a fusion model of multi-parametric MRI imaging histological features[J]. Chin J Magn Reson Imaging, 2022, 13(11): 53-59. DOI: 10.12015/issn.1674-8034.2022.11.010.
[35]
WYKES V, ZISAKIS A, IRIMIA M, et al. Importance and Evidence of Extent of Resection in Glioblastoma[J]. J Neurol Surg A Cent Eur Neurosurg, 2021, 82(1): 75-86. DOI: 10.1055/s-0040-1701635.
[36]
XIA Y, LIAO W, HUANG S, et al. Nomograms for Predicting the Overall and Cancer-Specific Survival of Patients with High-Grade Glioma: A Surveillance, Epidemiology, and End Results Study[J]. Turk Neurosurg, 2020, 30(1): 48-59. DOI: 10.5137/1019-5149.JTN.26131-19.2.
[37]
HERVEY-JUMPER S L, BERGER M S. Role of surgical resection in low- and high-grade gliomas[J/OL]. Curr Treat Options Neurol, 2014, 16(4): 284 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/24595756. DOI: 10.1007/s11940-014-0284-7.
[38]
ZHANG Y J, CHENG J L, LI Y. Application of texture analysis of magnetic resonance images in defining the borders of high-grade glioma[J]. J Clin Radiol, 2017, 36(3): 315-318. DOI: 10.13437/j.cnki.jcr.2017.03.005.
[39]
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[40]
OHGAKI H, KLEIHUES P. The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19(4): 764-772. DOI: 10.1158/1078-0432.CCR-12-3002.
[41]
WANG J, BAO S L, JIA C Z, et al. Dynamic contrast-enhanced magnetic resonance imaging texture analysis to assess IDH1 mutations and tumor cell proliferation in glioma[J]. Chin J Med Imaging, 2021, 29(7): 659-664. DOI: 10.3969/j.issn.1005-5185.2021.07.003.
[42]
SU C Q, LU S S, ZHOU M D, et al. Combined texture analysis of diffusion-weighted imaging with conventional MRI for non-invasive assessment of IDH1 mutation in anaplastic gliomas[J]. Clin Radiol, 2019, 74(2): 154-160. DOI: 10.1016/j.crad.2018.10.002.
[43]
GIHR G, HORVATH-RIZEA D, HEKELER E, et al. Diffusion weighted imaging in high-grade gliomas: A histogram-based analysis of apparent diffusion coefficient profile[J/OL]. PLoS One, 2021, 16(4): e0249878 [2023-01-16]. https://pubmed.ncbi.nlm.nih.gov/33857203. DOI: 10.1371/journal.pone.0249878.
[44]
WANG S, MENG M, ZHANG X, et al. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest[J]. Oncol Lett, 2018, 15(5): 7297-7304. DOI: 10.3892/ol.2018.8232.
[45]
RUI W, PANG H, XIE Q, et al. Association Between Histopathology and Magnetic Resonance Imaging Texture in Grading Gliomas Based on Intraoperative Magnetic Resonance Navigated Stereotactic Biopsy[J]. J Comput Assist Tomogr, 2021, 45(5): 728-735. DOI: 10.1097/RCT.0000000000001201.
[46]
HUANG W Y, WEN L H, WU G, et al. Radiological model based on the standard magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma using texture analysis[J]. Cancer Sci, 2021, 112(7): 2835-2844. DOI: 10.1111/cas.14918.
[47]
SASAKI T, KINOSHITA M, FUJITA K, et al. Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma[J/OL]. Sci Rep, 2019, 9(1): 14435 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31594994. DOI: 10.1038/s41598-019-50849-y.
[48]
MÜLLER BARK J, KULASINGHE A, CHUA B, et al. Circulating biomarkers in patients with glioblastoma[J]. Br J Cancer, 2020, 122(3): 295-305. DOI: 10.1038/s41416-019-0603-6.
[49]
YILDIRIM M, BAYKARA M. Differentiation of progressive disease from pseudoprogression using MRI histogram analysis in patients with treated glioblastoma[J]. Acta Neurol Belg, 2022, 122(2): 363-368. DOI: 10.1007/s13760-021-01607-3.
[50]
CHEN X, WEI X, ZHANG Z, et al. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI[J]. Clin Imaging, 2015, 39(5): 775-780. DOI: 10.1016/j.clinimag.2015.04.003.
[51]
ELSHAFEEY N, KOTROTSOU A, HASSAN A, et al. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma[J/OL]. Nat Commun, 2019, 10(1): 3170 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31320621. DOI: 10.1038/s41467-019-11007-0.
[52]
GHIASEDDIN A P, SHIN D, MELNICK K, et al. Tumor Treating Fields in the Management of Patients with Malignant Gliomas[J/OL]. Curr Treat Options Oncol, 2020, 21(9): 76 [2022-06-08]. https://pubmed.ncbi.nlm.nih.gov/32734509. DOI: 10.1007/s11864-020-00773-5.
[53]
LIU M M, HE Y X. Research progress of MRI in predicting recurrence patterns of high-grade glioma after surgery[J]. Chin J Magn Reson Imaging, 2021, 12(12): 99-101. DOI: 10.12015/issn.1674-8034.2021.12.023.
[54]
CHOUGULE T, GUPTA R K, SAINI J, et al. Radiomics signature for temporal evolution and recurrence patterns of glioblastoma using multimodal magnetic resonance imaging[J/OL]. NMR Biomed, 2022, 35(3): e4647 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/34766380. DOI: 10.1002/nbm.4647.
[55]
FATHI KAZEROONI A, AKBARI H, SHUKLA G, et al. Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma[J]. JCO Clin Cancer Inform, 2020, 4: 234-244. DOI: 10.1200/CCI.19.00121.
[56]
SHIM K Y, CHUNG S W, JEONG J H, et al. Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI[J/OL]. Sci Rep, 2021, 11(1): 9974 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/33976264. DOI: 10.1038/s41598-021-89218-z.
[57]
CHOI Y, AHN K J, NAM Y, et al. Analysis of heterogeneity of peritumoral T2 hyperintensity in patients with pretreatment glioblastoma: Prognostic value of MRI-based radiomics[J/OL]. Eur J Radiol, 2019, 120: 108642 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31546124. DOI: 10.1016/j.ejrad.2019.108642.
[58]
CHADDAD A, DANIEL P, DESROSIERS C, et al. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time[J]. IEEE J Biomed Health Inform, 2019, 23(2): 795-804. DOI: 10.1109/JBHI.2018.2825027.
[59]
BAHRAMI N, PICCIONI D, KARUNAMUNI R, et al. Edge Contrast of the FLAIR Hyperintense Region Predicts Survival in Patients with High-Grade Gliomas following Treatment with Bevacizumab[J]. AJNR Am J Neuroradiol, 2018, 39(6): 1017-1024. DOI: 10.3174/ajnr.A5620.

PREV Research progress in predicting molecular typing of lower grade glioma by functional magnetic resonance imaging
NEXT Application and research progress of magnetic resonance parameter quantitative technique in myocardial involvement diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn