Share:
Share this content in WeChat
X
Review
Application and research progress of magnetic resonance parameter quantitative technique in myocardial involvement diseases
ABASIJIANG·Adili   LI Shan  QI Haicheng  LIU Qian  LI Yan  XING Yan 

Cite this article as: ABASIJIANG·A D L, LI S, QI H C, et al. Application and research progress of magnetic resonance parameter quantitative technique in myocardial involvement diseases[J]. Chin J Magn Reson Imaging, 2023, 14(2): 179-185. DOI:10.12015/issn.1674-8034.2023.02.032.


[Abstract] There are many kinds of myocardial involvement diseases, including primary and secondary changes. Because of its accompanying cardiac function damage, it seriously endangers the life of patients, early diagnosis and intervention of myocardial changes is particularly important. Cardiac magnetic resonance (CMR) is widely used in various medical fields related to cardiovascular diseases. In recent years, rapid technological innovation has led to new CMR imaging technology development. Parametric quantitative techniques, such as longitudinal relaxation time quantitative imaging (T1 mapping) and transverse relaxation time quantitative imaging (T2 mapping), provide a non-invasive examination method to quantify tissue changes in myocardial disease. These changes mainly include myocardial fibrosis, myocardial edema with increased intracellular and/or extracellular water, and myocardial hemorrhage and other pathological changes. T1 mapping and T2 mapping are not only considered to be reliable biomarkers for the diagnosis of cardiomyopathy but are also considered to a reliable imaging parameter in treatment monitoring and prognosis evaluation. This article reviews application of parametric quantitative techniques and research progress in evaluating myocardial tissue. The purpose is to describe how the parameter quantitative technology can identify abnormal myocardium early and accurately, and put forward the existing problems and future research ideas to provide references for the research of this technology.
[Keywords] heart;magnetic resonance imaging;T1 mapping;T2 mapping;quantitative assessment;extracellular volume fraction

ABASIJIANG·Adili    LI Shan   QI Haicheng   LIU Qian   LI Yan   XING Yan*  

Department of Radiology, Affiliated First Hospital of Xinjiang Medical University, Urumqi 830011, China

*Correspondence to: Xing Y, E-mail: xingyanzwb@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82160334); Special Regional Collaborative Innovation Project of Xinjiang Uygur Autonomous Region (Science and Technology Aid Xinjiang Program) (No. 2021E02067).
Received  2022-09-13
Accepted  2023-02-01
DOI: 10.12015/issn.1674-8034.2023.02.032
Cite this article as: ABASIJIANG·A D L, LI S, QI H C, et al. Application and research progress of magnetic resonance parameter quantitative technique in myocardial involvement diseases[J]. Chin J Magn Reson Imaging, 2023, 14(2): 179-185. DOI:10.12015/issn.1674-8034.2023.02.032.

[1]
Annual Report on Cardiovascular health and diseases in China 2019[J]. J Cardiovascular Pulmonary Dis, 2020, 39(9): 1157-1162. DOI: 10.3969/j.issn.1007-5062.2020.10.001.
[2]
FERREIRA V M, SCHULZ-MENGER J, HOLMVANG G, et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[3]
KIM P K, HONG Y J, IM D J, et al. Myocardial T1 and T2 Mapping: Techniques and Clinical Applications[J]. Korean J Radiol, 2017, 18(1): 113-131. DOI: 10.3348/kjr.2017.18.1.113.
[4]
MESSROGHLI D R, GREISER A, FRÖHLICH M, et al. Optimization and validation ofa fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart[J]. J Magn Reson Imaging, 2007, 26(4): 1081-1086. DOI: 10.1002/jmri.21119.
[5]
HUANG S M, JIANG G H, WANG T Y, et al. Application of cardiac magnetic resonance extracellular volume in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 98-101. DOI: 10.12015/issn.1674-8034.2021.03.024.
[6]
DELSO G, FARRÉ L, ORTIZ-PÉREZ J T, et al. Improving the robustness of MOLLI T1 maps with a dedicated motion correction algorithm[J/OL]. Sci Rep, 2021, 11(1): 18546 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/34535689/. DOI: 10.1038/s41598-021-97841-z.
[7]
GASPAR A S, MALTÊS S, MARQUES H, et al. Myocardial T1 mapping with magnetic resonance imaging-a useful tool to understand the diseased heart[J]. Rev Port Cardiol, 2022, 41(1): 61-69. DOI: 10.1016/j.repc.2021.04.005.
[8]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 Myocardial MRI Mapping: Value in Detecting Myocardial Hyperemia in Acute Myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[9]
LIU Y, ZHU J, CHEN M, et al. 3.0T cardiac magnetic resonance quantificationof native T1 and myocardial extracellular volume for the diagnosis of late gadolinium enhancement-negative cardiac amyloidosis[J/OL]. Ann Transl Med, 2022, 10(14): 794 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/35965812/. DOI: 10.21037/atm-22-3251.
[10]
ROLLER F C, FUEST S, MEYER M, et al. Assessment of Cardiac Involvement in F abry Disease (FD) with Native T1 Mapping[J]. Rofo, 2019, 191(10): 932-939. DOI: 10.1055/a-0836-2723.
[11]
BULLUCK H, ROSMINI S, ABDEL-GADIR A, et al. Diagnostic performance of T1 and T2 mapping to detect intramyocardial hemorrhage in reperfused ST-segment elevation myocardial infarction (STEMI) patients[J]. J Magn Reson Imaging, 2017, 46(3): 877-886. DOI: 10.1002/jmri.25638.
[12]
LI S, DUAN X, FENG G, et al. Multiparametric Cardiovascular Magnetic Resonance in Acute Myocarditis: Comparison of 2009 and 2018 Lake Louise Criteria With Endomyocardial Biopsy Confirmation[J/OL]. Front Cardiovasc Med, 2021, 8: 739892 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/34712710/. DOI: 10.3389/fcvm.2021.739892.
[13]
DABIR D, LUETKENS J, KUETTING D, et al. Myocardial Mapping in Systemic Sarcoidosis: A Comparison of Two Measurement Approaches[J]. Rofo, 2021, 193(1): 68-76. DOI: 10.1055/a-1174-0537.
[14]
HUSAIN N, WATANABE K, BERHANE H, et al. Multi-parametric cardiovascular magnetic resonance with regadenoson stress perfusion is safe following pediatric heart transplantation and identifies history of rejection and cardiac allograft vasculopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 135 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/34809650/. DOI: 10.1186/s12968-021-00803-7.
[15]
TAHIR E, SINN M, BOHNEN S, et al. Acute versus Chronic Myocardial Infarction: Diagnostic Accuracy of Quantitative Native T1 and T2 Mapping versus Assessment of Edema on Standard T2-weighted Cardiovascular MR Images for Differentiation[J]. Radiology, 2017, 285(1): 83-91. DOI: 10.1148/radiol.2017162338.
[16]
DASTIDAR A G, HARRIES I, PONTECORBOLI G, et al. Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique[J]. Int J Cardiovasc Imaging, 2019, 35(3): 517-527. DOI: 10.1007/s10554-018-1467-1.
[17]
XU J, ZHAO S H, LU M J. Research advances in imaging techniques and clinicalapplications of myocardial T2 mapping[J]. Chin J Radiol, 2020, 54(11): 1132-1136. DOI: 10.3760/cma.j.cn112149-20191104-00885.
[18]
FAN Z Y, WU C Z, AN D A, et al. Myocardial area at risk and salvage in reperfused acute MI measured by texture analysis of cardiac T2 mapping and its prediction value of functional recovery in the convalescent stage[J]. Int J Cardiovasc Imaging, 2021, 37(12): 3549-3560. DOI: 10.1007/s10554-021-02336-7.
[19]
CHEN B H, AN D A, HE J, et al. Myocardial Extracellular Volume Fraction Allows Differentiation of Reversible Versus Irreversible Myocardial Damage and Prediction of Adverse Left Ventricular Remodeling of ST-Elevation Myocardial Infarction[J]. J Magn Reson Imaging, 2020, 52(2): 476-487. DOI: 10.1002/jmri.27047.
[20]
ZHAO X H, LIU X F, MA H Y, et al. T1, T2 mapping and extracellular volume diagnostic value in patients with acute myocardial infarction[J]. The Journal of Practical Medicine, 2021, 37(10): 1337-1341. DOI: 10.3969/j.issn.1006-5725.2021.10.021.
[21]
LIGUORI C, FARINA D, VACCHER F, et al. Myocarditis: imaging up to date[J]. Radiol Med, 2020, 125(11): 1124-1134. DOI: 10.1007/s11547-020-01279-8.
[22]
KHANNA S, AMARASEKERA A T, Li C, et al. The utility of cardiac magnetic resonance imaging in the diagnosis of adult patients with acute myocarditis: a systematic review and meta-analysis[J]. Int J Cardiol, 2022, 363: 225-239. DOI: 10.1016/j.ijcard.2022.06.047.
[23]
BOHNEN S, RADUNSKI U K, Lund G K, et al. Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(7): 744-751. DOI: 10.1093/ehjci/jex007.
[24]
HINOJAR R, FOOTE L, ARROYO UCAR E, et al. Native T1 in Discrimination of Acute and Convalescent Stages in Patients With Clinical Diagnosis of Myocarditis[J]. JACC Cardiovasc Imaging, 2015, 8(1): 37-46. DOI: 10.1016/j.jcmg.2014.07.016.
[25]
LI Y, LIU X, YANG F, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy[J]. Eur Radiol, 2021, 31(7): 4557-4567. DOI: 10.1007/s00330-020-07650-7.
[26]
ŚPIEWAK M, KŁOPOTOWSKI M, OJRZYŃSKA N, et al. Impact of cardiac magnetic resonance on the diagnosis of hypertrophic cardiomyopathy-a 10-year experience with over 1000 patients[J]. Eur Radiol, 2021, 31(3): 1194-1205. DOI: 10.1007/s00330-020-07207-8.
[27]
CUI Y, CHEN Y, CAO Y, et al. Myocardial extracellular volume fraction measurements with MOLLI 5(3)3 by cardiovascular MRI for the discrimination of healthy volunteers from dilated and hypertrophic cardiomyopathy patients[J]. Clin Radiol, 2019, 74(9): 732-739. DOI: 10.1016/j.crad.2019.04.019.
[28]
ARCARI L, HINOJAR R, ENGEL J, et al. Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions-Comparison of uremic, hypertensive and hypertrophic cardiomyopathy[J]. Int J Cardiol, 2020, 306: 102-108. DOI: 10.1016/j.ijcard.2020.03.002.
[29]
PUNTMANN V O, VOIGT T, CHEN Z, et al. Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy[J]. JACC Cardiovasc Imaging, 2013, 6(4): 475-484. DOI: 10.1016/j.jcmg.2012.08.019.
[30]
GASTL M, LACHMANN V, CHRISTIDI A, et al. Cardiac magnetic resonance T2 mapping and feature tracking in athlete's heart and HCM[J]. Eur Radiol, 2021, 31(5): 2768-2777. DOI: 10.1007/s00330-020-07289-4.
[31]
LIANG L, WANG X, YU Y, et al. T1 Mapping and Extracellular Volume in Cardiomyopathy Showing Left Ventricular Hypertrophy: Differentiation Between Hypertrophic Cardiomyopathy and Hypertensive Heart Disease[J]. Int J Gen Med, 2022, 15: 4163-4173. DOI: 10.2147/IJGM.S350673.
[32]
SHAO X N, JIN Y N, SUN Y J, et al. Evaluation of the correlation between myocardial fibrosis and ejection fraction in dilated cardiomyopathy using magnetic resonance T1 mapping.[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12300-12305. DOI: 10.26355/eurrev_202012_24022.
[33]
NOYA-RABELO M M, MACEDO C T, LAROCCA T, et al. The Presence and Extension of Myocardial Fibrosis in the Undetermined Form of Chagas' Disease: A Study Using Magnetic Resonance[J]. Arq Bras Cardiol, 2018, 110(2): 124-131. DOI: 10.5935/abc.20180016.
[34]
EL-REWAIDY H, NEISIUS U, NAKAMORI S, et al. Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T1 mapping[J/OL]. PLoS One, 2020, 15(6): e233694 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/32479518/. DOI: 10.1371/journal.pone.0233694.
[35]
SPIEKER M, KATSIANOS E, GASTL M, et al. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(5): 574-582. DOI: 10.1093/ehjci/jex230.
[36]
HONG Y J, PARK C H, KIM Y J, et al. Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects[J]. Int J Cardiovasc Imaging, 2015, 31(Suppl 1): 115-122. DOI: 10.1007/s10554-015-0595-0.
[37]
MORDI I, CARRICK D, BEZERRA H, et al. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(7): 797-803. DOI: 10.1093/ehjci/jev216.
[38]
LEE H, PARK JB, YOON YE, et al. Noncontrast Myocardial T1 Mapping by Cardiac Magnetic Resonance Predicts Outcome in Patients With Aortic Stenosis[J]. JACC Cardiovasc Imaging, 2018, 11(7): 974-983. DOI: 10.1016/j.jcmg.2017.09.005.
[39]
EVERETT R J, TREIBEL T A, FUKUI M, et al. Extracellular Myocardial Volume in Patients With Aortic Stenosis[J]. J Am Coll Cardiol, 2020, 75(3): 304-316. DOI: 10.1016/j.jacc.2019.11.032.
[40]
WANG S, HU H, LU M, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling[J]. Eur Radiol, 2017, 27(11): 4620-4630. DOI: 10.1007/s00330-017-4841-9.
[41]
ZHUANG B, CUI C, SIRAJUDDIN A, et al. Detection of Myocardial Fibrosis and Left Ventricular Dysfunction with Cardiac MRI in a Hypertensive Swine Model[J/OL]. Radiol Cardiothorac Imaging, 2020, 2(4): e190214 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/32914091/. DOI: 10.1148/ryct.2020190214.
[42]
PONSIGLIONE A, GAMBARDELLA M, GREEN R, et al. Cardiovascular magnetic resonance native T1 mapping in Anderson-Fabry disease: a systematic review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 31 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/35606874/. DOI: 10.1186/s12968-022-00859-z.
[43]
HAGÈGE A, RÉANT P, HABIB G, et al. Fabry disease in cardiology practice: Literature review and expert point of view[J]. Arch Cardiovasc Dis, 2019, 112(4): 278-287. DOI: 10.1016/j.acvd.2019.01.002.
[44]
DEBORDE E, DUBOURG B, BEJAR S, et al. Differentiation between Fabry disease and hypertrophic cardiomyopathy with cardiac T1 mapping[J]. Diagn Interv Imaging, 2020, 101(2): 59-67. DOI: 10.1016/j.diii.2019.08.006.
[45]
NORDIN S, KOZOR R, BULLUCK H, et al. Cardiac Fabry Disease With Late Gadolinium Enhancement Is a Chronic Inflammatory Cardiomyopathy[J]. J Am Coll Cardiol, 2016, 68(15): 1707-1708. DOI: 10.1016/j.jacc.2016.07.741.
[46]
BANYPERSAD S M. The Evolving Role of Cardiovascular Magnetic Resonance Imaging in the Evaluation of Systemic Amyloidosis[J/OL]. Magn Reson Insights, 2019, 12: 1178623X19843519 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/31068754/. DOI: 10.1177/1178623X19843519.
[47]
RIDOUANI F, DAMY T, TACHER V, et al. Myocardial native T2 measurement to differentiate light-chain and transthyretin cardiac amyloidosis and assess prognosis[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 58 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/30115079/. DOI: 10.1186/s12968-018-0478-3.
[48]
LIU J M, LIU A, LEAL J, et al. Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 74 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/28954631/. DOI: 10.1186/s12968-017-0386-y.
[49]
THONGSONGSANG R, SONGSANGJINDA T, TANAPIBUNPON P, et al. Native T1 mapping and extracellular volume fraction for differentiation of myocardial diseases from normal CMR controls in routine clinical practice[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 270 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/34082703/. DOI: 10.1186/s12872-021-02086-3.
[50]
KORTHALS D, CHATZANTONIS G, BIETENBECK M, et al. CMR-based T1-mapping offers superior diagnostic value compared to longitudinal strain-based assessment of relative apical sparing in cardiac amyloidosis[J/OL]. Sci Rep, 2021, 11(1): 15521 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/34330967/. DOI: 10.1038/s41598-021-94650-2.
[51]
MAYR A, KITTERER D, LATUS J, et al. Evaluation of myocardial involvement in patients with connective tissue disorders: a multi-parametric cardiovascular magnetic resonance study[J/OL]. J Cardiovasc Magn Reson, 2017, 18(1): 67 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/27733210/. DOI: 10.1186/s12968-016-0288-4.
[52]
DIAO K Y, YANG Z G, XU H Y, et al. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2017, 18(1): 92 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/27955698/. DOI: 10.1186/s12968-016-0313-7.
[53]
DE LUCA G, PALMISANO A, CAMPOCHIARO C, et al. Cardiac magnetic resonance in systemic sclerosis myocarditis: the value of T2 mapping to detect myocardial inflammation[J]. Rheumatology (Oxford), 2022, 61(11): 4409-4419. DOI: 10.1093/rheumatology/keac098.
[54]
PUNTMANN V O, ISTED A, HINOJAR R, et al. T1 and T2 Mapping in Recognition of Early Cardiac Involvement in Systemic Sarcoidosis[J]. Radiology, 2017, 285(1): 63-72. DOI: 10.1148/radiol.2017162732.
[55]
LIU X, YANG Z G, GAO Y, et al. Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: a contrast-enhanced cardiovascular magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2018, 17(1): 139 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/30373588/. DOI: 10.1186/s12933-018-0782-0.
[56]
JELLIS C, WRIGHT J, KENNEDY D, et al. Association of Imaging Markers of Myocardial Fibrosis With Metabolic and Functional Disturbances in Early Diabetic Cardiomyopathy[J]. Circ Cardiovasc Imaging, 2011, 4(6): 693-702. DOI: 10.1161/CIRCIMAGING.111.963587.
[57]
GAO Y, YANG Z G, REN Y, et al. Evaluation of myocardial fibrosis in diabetes with cardiac magnetic resonance T1-mapping: Correlation with the high-level hemoglobin A1c[J]. Diabetes Res Clin Pract, 2019, 150: 72-80. DOI: 10.1016/j.diabres.2019.03.004.
[58]
ARCARI L, CAMASTRA G, CIOLINA F, et al. T1 and T2 Mapping in Uremic Cardiomyopathy: An Update[J/OL]. Card Fail Rev, 2022, 8: e02 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/35111336/. DOI: 10.15420/cfr.2021.19.
[59]
ARCARI L, HINOJAR R, ENGEL J, et al. Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions-Comparison of uremic, hypertensive and hypertrophic cardiomyopathy[J]. Int J Cardiol, 2020, 306: 102-108. DOI: 10.1016/j.ijcard.2020.03.002.
[60]
HAYER M K, RADHAKRISHNAN A, PRICE A M, et al. Defining Myocardial Abnormalities Across the Stages of Chronic Kidney Disease[J]. JACC Cardiovasc Imaging, 2020, 13(11): 2357-2367. DOI: 10.1016/j.jcmg.2020.04.021.
[61]
HASLBAUER J D, LINDNER S, VALBUENA-LOPEZ S, et al. CMR imaging biosignature of cardiac involvement due to cancer-related treatment by T1 and T2 mapping[J]. Int J Cardiol, 2019, 275: 179-186. DOI: 10.1016/j.ijcard.2018.10.023.
[62]
MUEHLBERG F, FUNK S, ZANGE L, et al. Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy[J]. ESC Heart Fail, 2018, 5(4): 620-629. DOI: 10.1002/ehf2.12277.
[63]
MELÉNDEZ G C, JORDAN J H, AGOSTINO R B D, et al. Progressive 3-Month Increase in LV Myocardial ECV After Anthracycline-Based Chemotherapy[J]. JACC Cardiovasc Imaging, 2017, 10(6): 708-709. DOI: 10.1016/j.jcmg.2016.06.006.
[64]
ALTAHA M A, NOLAN M, MARWICK T H, et al. Can Quantitative CMR Tissue Characterization Adequately Identify Cardiotoxicity During Chemotherapy?: Impact of Temporal and Observer Variability[J]. JACC Cardiovasc Imaging, 2020, 13(4): 951-962. DOI: 10.1016/j.jcmg.2019.10.016.
[65]
YANG M X, LI Q L, WANG D Q, et al. Myocardial edema during chemotherapy for gynecologic malignancies: A cardiac magnetic resonance T2 mapping study[J/OL]. Front Oncol, 2022, 12: 961841 [2022-09-12]. https://pubmed.ncbi.nlm.nih.gov/36263209/. DOI: 10.3389/fonc.2022.961841.

PREV Research progress of MRI-based texture analysis in high-grade gliomas
NEXT Research progress of different MRI techniques in young women breast tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn