Share:
Share this content in WeChat
X
Special Focus
Value of DCE-MRI based radiomics features for prediction of axillary lymph node metastasis in breast carcinoma
WANG Yunxia  SHANG Yiyan  GUO Yaxin  HAI Menglu  Gao Yang  WEI Huanhuan  LI Xiaodong  WANG Meiyun  TAN Hongna 

Cite this article as: WANG Y X, SHANG Y Y, GUO Y X, et al. Value of DCE-MRI based radiomics features for prediction of axillary lymph node metastasis in breast carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(3): 21-27. DOI:10.12015/issn.1674-8034.2023.03.005.


[Abstract] Objective To explore the value of radiomics features extracted from dynamic contrast enhanced MRI (DCE-MRI) for preoperative prediction of axillary lymph node (ALN) metastasis in breast cancer.Materials and Methods The first preoperative MRI images and clinicopathological data (including patient age, location and size of lesion, SBR grade, expression of ER, PR, HER-2 and Ki-67, whether ALN metastases and vascular cancer thrombus were present) of patients with breast cancer confirmed by surgical pathology in Henan Provincial People's Hospital from January 2017 to December 2020 were retrospectively analyzed. A total of 356 patients aged 26 to 82 (49.17±10.75) years were enrolled, which were randomly divided into the training set (n=284) and test set (n=72) according to the ratio of 8∶2. The radiomics features of phase 3 images in the DCE-T1WI sequence were extracted, and the quantitative radiomics features having strong correlation with ALN metastasis were selected using Mann-Whitney U test, Z-score normalization, variance threshold, K-best and least absolute shrinkage and selection operator (LASSO) regression methods. A variety of classifier algorithms were used to construct radiomics labels in a permutation-combination way. The area under the curve (AUC), sensitivity, specificity and accuracy of receiver operating characteristic curve (ROC) were used to evaluate the efficiency of the model, then the optimal prediction model was selected according to the efficiency.Results Among 356 patients with breast cancer, 117 patients (32.9%, 117/356) had ALN metastasis and 239 patients (67.1%, 239/356) had no ALN metastasis. There was a statistically significant difference in HER-2 positive expression between the ALN metastasis group and non-metastasis group (χ2=5.433, P=0.020), and there was no statistically significant differences in the other clinicopathological indicators between the two groups (P>0.05).There was no statistically significant differences in clinicopathological indicators between the training set and the test set (P>0.05). A total of 18 radiomics features having strong correlation with ALN metastasis were selected finally from the initial 643 radiomics features, including each 6 morphological features, first order features and texture features respectively. The optimal ALN prediction model was selected through radiomics signatures based on maximum absolute value normalization and Bagging decision tree algorithm, and the AUC value, sensitivity, specificity and accuracy of the model in the training set and test set were 0.929 [95% confidence interval (CI): 0.897-0.960], 69.9%, 96.9%, 88.0% and 0.803 (95% CI: 0.701-0.905), 75.0%, 75.0% and 75.0% respectively.Conclusions The prediction model based on DCE-MRI radiomics features could be helpful for preoperative predicting ALN metastasis in breast cancer.
[Keywords] breast cancer;axillary lymph node metastasis;predictive effectiveness;radiomics;magnetic resonance imaging

WANG Yunxia1   SHANG Yiyan1   GUO Yaxin2   HAI Menglu3   Gao Yang4   WEI Huanhuan5   LI Xiaodong1   WANG Meiyun1   TAN Hongna1*  

1 Department of Medical Imaging, People's Hospital of Henan University (Henan Provincial People's Hospital), Zhengzhou 450003, China

2 Department of Medical Imaging, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, China

3 Department of Medical Imaging, Affiliated Cancer Hospital of Zhengzhou University (Henan Provincial Cancer Hospital), Zhengzhou 450008, China

4 Heart Center, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, China

5 Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China

Corresponding author: Tan HN, E-mail: natan2000@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Henan Province (No. 202300410081); Medical Science and Technological Project of Henan Province (No. LHGJ20220055).
Received  2022-12-12
Accepted  2023-03-06
DOI: 10.12015/issn.1674-8034.2023.03.005
Cite this article as: WANG Y X, SHANG Y Y, GUO Y X, et al. Value of DCE-MRI based radiomics features for prediction of axillary lymph node metastasis in breast carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(3): 21-27. DOI:10.12015/issn.1674-8034.2023.03.005.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA A Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[3]
MAO N, YIN P, LI Q, et al. Radiomics nomogram of contrast-enhanced spectral mammography for prediction of axillary lymph node metastasis in breast cancer: a multicenter study[J]. Eur Radiol, 2020, 30(12): 6732-6739. DOI: 10.1007/s00330-020-07016-z.
[4]
YU Y F, TAN Y J, XIE C M, et al. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer[J/OL]. JAMA Netw Open, 2020, 3(12): e2028086 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/33289845/. DOI: 10.1001/jamanetworkopen.2020.28086.
[5]
HAN L, ZHU Y B, LIU Z Y, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer[J]. Eur Radiol, 2019, 29(7): 3820-3829. DOI: 10.1007/s00330-018-5981-2.
[6]
ZHOU J, LIU Z H, TAN H N, et al. Value of multi-parameter MRI radiomics features in the preoperative prediction of triple-negative and non-triple-negative breast cancer[J]. Chin J Radiol, 2020, 54(12): 1179-1184. DOI: 10.3760/cma.j.cn112149-20200120-00066
[7]
KUIJS V J, MOOSSDORFF M, SCHIPPER R J, et al. The role of MRI in axillary lymph node imaging in breast cancer patients: a systematic review[J]. Insights Imaging, 2015, 6(2): 203-215. DOI: 10.1007/s13244-015-0404-2.
[8]
VALENTE S A, LEVINE G M, SILVERSTEIN M J, et al. Accuracy of predicting axillary lymph node positivity by physical examination, mammography, ultrasonography, and magnetic resonance imaging[J]. Ann Surg Oncol, 2012, 19(6): 1825-1830. DOI: 10.1245/s10434-011-2200-7.
[9]
SANTUCCI D, FAIELLA E, CORDELLI E, et al. 3T MRI-radiomic approach to predict for lymph node status in breast cancer patients[J/OL]. Cancers (Basel), 2021, 13(9): 2228 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/34066451/. DOI: 10.3390/cancers13092228.
[10]
ZHAO M, WU Q, GUO L L, et al. Magnetic resonance imaging features for predicting axillary lymph node metastasis in patients with breast cancer[J/OL]. Eur J Radiol, 2020, 129: 109093 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/32512504/. DOI: 10.1016/j.ejrad.2020.109093.
[11]
FU Y Y, JIANG J X, CHEN S Z, et al. Establishment of risk prediction nomogram for ipsilateral axillary lymph node metastasis in T1 breast cancer[J]. J Zhejiang Univ Med Sci, 2021, 50(1): 81-89. DOI: 10.3724/zdxbyxb-2021-0013.
[12]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[13]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[14]
KUMAR V, GU Y H, BASU S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010.
[15]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[16]
ZHA H L, ZONG M, LIU X P, et al. Preoperative ultrasound-based radiomics score can improve the accuracy of the Memorial Sloan Kettering Cancer Center nomogram for predicting sentinel lymph node metastasis in breast cancer[J/OL]. Eur J Radiol, 2021, 135: 109512 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/33429302/. DOI: 10.1016/j.ejrad.2020.109512.
[17]
YANG W T, BU H. Guidelines for immunohistochemical detection of estrogen and progesterone receptors in breast cancer[J]. Chin J Pathol, 2015, 44(4): 237-239. DOI: 10.3760/cma.j.issn.0529-5807.2015.04.005.
[18]
Chinese Anti-Cancer Association Breast Cancer Professional Committee. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
[19]
ALLISON K H, HAMMOND M E H, DOWSETT M, et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update[J]. J Clin Oncol, 2020, 38(12): 1346-1366. DOI: 10.1200/JCO.19.02309.
[20]
VAN GRIETHUYSEN J J M, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J/OL]. Cancer Res, 2017, 77(21): e104-e107 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/29092951/. DOI: 10.1158/0008-5472.CAN-17-0339.
[21]
GIULIANO A E, BALLMAN K V, MCCALL L, et al. Effect of axillary dissection vs No axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (alliance) randomized clinical trial[J]. JAMA, 2017, 318(10): 918-926. DOI: 10.1001/jama.2017.11470.
[22]
SCHETTINI F, CHIC N, BRASÓ-MARISTANY F, et al. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer[J/OL]. NPJ Breast Cancer, 2021, 7(1): 1 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/33397968/. DOI: 10.1038/s41523-020-00208-2.
[23]
GUAN N, HAN L, YU T. Relationship of dynamic enhanced MRI findings of breast cancer and axillary lymph node metastasis[J]. Chin J Med Imaging Technol, 2019, 35(4): 503-506. DOI: 10.13929/j.1003-3289.201811015.
[24]
JIANG Y, MA M M, CHENG Y J, et al. Feasibility study of predicting axillary lymph node metastasis of breast cancer using radiomics analysis based on dynamic contrast-enhanced MRI[J]. Chin J Radiol, 2022, 56(6): 631-635. DOI: 10.3760/cma.j.cn112149-20210810-00460.
[25]
ZHU Y Q, JI H, ZHU Y F, et al. Predictive value of preoperative MRI-based nomogram for axillary lymph node metastasis in breast cancer[J]. Chin J Magn Reson Imaging, 2022, 13(5): 52-58. DOI: 10.12015/issn.1674-8034.2022.05.010.
[26]
LIU J, SUN D, CHEN L L, et al. Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2019, 9: 98 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/31632912/. DOI: 10.3389/fonc.2019.00980.
[27]
CHAI R M, MA H, XU M J, et al. Differentiating axillary lymph node metastasis in invasive breast cancer patients: a comparison of radiomic signatures from multiparametric breast MR sequences[J]. J Magn Reson Imaging, 2019, 50(4): 1125-1132. DOI: 10.1002/jmri.26701.
[28]
SHAN Y N, XU W, WANG R, et al. A nomogram combined radiomics and kinetic curve pattern as imaging biomarker for detecting metastatic axillary lymph node in invasive breast cancer[J/OL]. Front Oncol, 2020, 10: 1463 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/32983979/. DOI: 10.3389/fonc.2020.01463.
[29]
SUN Q C, LIN X N, ZHAO Y S, et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region[J/OL]. Front Oncol, 2020, 10: 53 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/32083007/. DOI: 10.3389/fonc.2020.00053.
[30]
LIU Y, LI X, ZHU L N, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 6729473 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/36051932/. DOI: 10.1155/2022/6729473.
[31]
YANG J B, WANG T, YANG L F, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method[J/OL]. Sci Rep, 2019, 9(1): 4429 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/30872652/. DOI: 10.1038/s41598-019-40831-z.
[32]
ZHENG X Y, YAO Z, HUANG Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J/OL]. Nat Commun, 2020, 11(1): 1236 [2022-12-12]. https://pubmed.ncbi.nlm.nih.gov/32144248/. DOI: 10.1038/s41467-020-15027-z.
[33]
ZHOU L Q, WU X L, HUANG S Y, et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2020, 294(1): 19-28. DOI: 10.1148/radiol.2019190372.

PREV 3D-ultrashort echo time MRI-based radiomics model facilitates the assessment of lymph node metastasis in non-small cell lung cancer
NEXT MRI-based radiomics for prediction of tumor regression pattern to neoadjuvant chemotherapy in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn