Share:
Share this content in WeChat
X
Clinical Article
Early brain functional networks after acute stress: A resting-state fMRI study
ZHAO Na  MENG Linghui  DU Guoshuai  ZHANG Yingdong  LIU Hongran  GAO Minglong  REN Beibei  LIU Furong  ZHANG Li 

Cite this article as: ZHAO N, MENG L H, DU G S, et al. Early brain functional networks after acute stress: A resting-state fMRI study[J]. Chin J Magn Reson Imaging, 2023, 14(3): 48-52. DOI:10.12015/issn.1674-8034.2023.03.009.


[Abstract] Objective To investigate the alterations of functional brain network topology shortly after acute stress using resting-state functional magnetic resonance imaging (rs-fMRI) with graph theory method.Materials and Methods Trauma group involved 36 motor vehicle accidents (MVA) survivors at the Third Hospital of Hebei Medical University between November 2020 and April 2022, and control group recruited 43 gender-, age- and education degree-matched healthy subjects. All subjects got MRI scan and clinical evaluation. MVA survivors received MRI scan and trauma-specific clinical assessments within 1 week from the MVA. Based rs-fMRI with GRETNA (Graph Theoretical Network Analysis) toolbox, Topologic properties of brain functional network were investigated at both global and nodal level. The global level properties included clustering coefficient (Cp); shortest path length (Lp); normalized Cp γ; normalized Lp λ; small-worldness σ, local efficiency (Eloc) and global efficiency (Eg). Group differences in those properties were explored. In MVA group, correlation analyses were peformed to detect the relationship between topologic properties and anxiety scores.Results The functional brain network fitted the definition of small-worldness in MVA survivors and controls. Significantly higher Lp (P=0.001, P<0.05) and lower Eg (P=0.015, P<0.05) values were found in MVA survivors as compared with those in control group. There were no statistically significant group differences in Cp、γ、λ、σ and Eloc (P>0.05). MVA survivors showed increased nodal centralities in bilateral inferior occipital gyrus (Left, P=0.020; Right, P=0.040; P<0.05, FDR correction). There was no significant relationship between topologic properties and anxiety scores.Conclusions These results indicate the functional brain network of MVA survivors exhibit small-worldness, but altered global and nodal topological properties shortly after acute stress.
[Keywords] acute stress;brain function;brain network;graph theory;resting-state functional magnetic resonance imaging;magnetic resonance imaging

ZHAO Na1   MENG Linghui1*   DU Guoshuai1   ZHANG Yingdong2   LIU Hongran1   GAO Minglong2   REN Beibei1   LIU Furong3   ZHANG Li4  

1 Department of CT/MRI, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, China

2 Mental Health Center, the First Hospital of Medical University, Shijiazhuang 050000, China

3 Department of CT/MRI, Neiqiu Traditional Chinese Medicine Hospital, Xingtai 054200, China

4 Department of Radiology and Nuclear Medicine, the First Hospital of Hebei Medical University, Shijiazhuang 050000, China

Corresponding author: Meng LH, E-mail: menglhui@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Hebei Province (No. H2020206278); S&T Program of Hebei (No. 20377734D).
Received  2022-10-13
Accepted  2023-02-23
DOI: 10.12015/issn.1674-8034.2023.03.009
Cite this article as: ZHAO N, MENG L H, DU G S, et al. Early brain functional networks after acute stress: A resting-state fMRI study[J]. Chin J Magn Reson Imaging, 2023, 14(3): 48-52. DOI:10.12015/issn.1674-8034.2023.03.009.

[1]
KEYES K M, MCLAUGHLIN K A, DEMMER R T, et al. Potentially traumatic events and the risk of six physical health conditions in a population-based sample[J]. Depress Anxiety, 2013, 30(5): 451-460. DOI: 10.1002/da.22090.
[2]
SCOTT K M, KOENEN K C, AGUILAR-GAXIOLA S, et al. Associations between lifetime traumatic events and subsequent chronic physical conditions: a cross-national, cross-sectional study[J/OL]. PLoS One, 2013, 8(11): e80573 [2022-10-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864645. DOI: 10.1371/journal.pone.0080573.
[3]
LAWN R B, NISHIMI K M, SUMNER J A, et al. Sexual violence and risk of hypertension in women in the nurses' health study Ⅱ: a 7-year prospective analysis[J]. J Am Heart Assoc, 2022, 11(5):e023015 [2022-10-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075082/. DOI: 10.1161/JAHA.121.023015.
[4]
MCEWEN B S, BOWLES N P, GRAY J D, et al. Mechanisms of stress in the brain[J]. Nat Neurosci, 2015, 18(10): 1353-1363. DOI: 10.1038/nn.4086.
[5]
MENG L H, JIANG J, JIN C F, et al. Trauma-specific grey matter alterations in PTSD[J]. Sci Rep, 2016, 6: 33748 [2022-10-12]. https://pubmed.ncbi.nlm.nih.gov/27651030/. DOI: 10.1038/srep33748.
[6]
BERMAN Z, ASSAF Y, TARRASCH R, et al. Macro- and microstructural gray matter alterations in sexually assaulted women[J]. J Affect Disord, 2020, 262: 196-204. DOI: 10.1016/j.jad.2019.10.024.
[7]
ALEXANDRA KREDLOW M, FENSTER R J, LAURENT E S, et al. Prefrontal cortex, amygdala, and threat processing: implications for PTSD[J]. Neuropsychopharmacology, 2022, 47(1): 247-259. DOI: 10.1038/s41386-021-01155-7.
[8]
TERR L C. Childhood traumas: an outline and overview[J]. Am J Psychiatry, 1991, 148(1): 10-20. DOI: 10.1176/ajp.148.1.10.
[9]
MCEWEN B S, GIANAROS P J. Stress- and allostasis-induced brain plasticity[J]. Annu Rev Med, 2011, 62: 431-445. DOI: 10.1146/annurev-med-052209-100430.
[10]
BENJET C, BROMET E, KARAM E G, et al. The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium[J]. Psychol Med, 2016, 46(2): 327-343. DOI: 10.1017/S0033291715001981.
[11]
LIU H, PETUKHOVA M V, SAMPSON N A, et al. Association of DSM-Ⅳ posttraumatic stress disorder with traumatic experience type and history in the World Health Organization world mental health surveys[J]. JAMA Psychiatry, 2017, 74(3): 270-281. DOI: 10.1001/jamapsychiatry.2016.3783.
[12]
ADMON R, LEYKIN D, LUBIN G, et al. Stress-induced reduction in hippocampal volume and connectivity with the ventromedial prefrontal cortex are related to maladaptive responses to stressful military service[J]. Hum Brain Mapp, 2013, 34(11): 2808-2816. DOI: 10.1002/hbm.22100.
[13]
DANIELS J K, LAMKE J P, GAEBLER M, et al. White matter integrity and its relationship to PTSD and childhood trauma: a systematic review and meta-analysis[J]. Depress Anxiety, 2013, 30(3): 207-216. DOI: 10.1002/da.22044.
[14]
SARABDJITSINGH R A, LOI M, JOËLS M, et al. Early life stress-induced alterations in rat brain structures measured with high resolution MRI[J/OL]. PLoS One, 2017, 12(9): e0185061 [2022-10-12]. https://pubmed.ncbi.nlm.nih.gov/28945761. DOI: 10.1371/journal.pone.0185061.[ DOI: ]
[15]
BRAHMAJOTHI M V, ABOU-DONIA M B. PTSD susceptibility and challenges: pathophysiological consequences of behavioral symptoms[J]. Mil Med, 2020, 185(Suppl 1): 279-285. DOI: 10.1093/milmed/usz321.
[16]
LUI S, HUANG X Q, CHEN L, et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China[J]. Proc Natl Acad Sci U S A, 2009, 106(36): 15412-15417. DOI: 10.1073/pnas.0812751106.
[17]
DU M Y, LIAO W, LUI S, et al. Altered functional connectivity in the brain default-mode network of earthquake survivors persists after 2 years despite recovery from anxiety symptoms[J]. Soc Cogn Affect Neurosci, 2015, 10(11): 1497-1505. DOI: 10.1093/scan/nsv040.
[18]
XIA M R, HE Y. Psychographic big data and connectomics of human brain[J]. Chin J Psychiatry, 2018, 51(4): 221-223. DOI: 10.3760/cma.j.issn.1006-7884.2018.04.001.
[19]
DU W, LIU Y Y Q, JIANG J, et al. Analysis of local efficiency and node local efficiency changes in patients with type 2 diabetes based on graph theory[J]. Chin J Magn Reson Imaging, 2022, 13(5): 70-76. DOI: 10.12015/issn.1674-8034.2022.05.013.
[20]
ZHANG X, SUO X L, YANG X, et al. Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder[J]. Transl Psychiatry, 2022, 12(1): 26. DOI: 10.1038/s41398-022-01791-7.
[21]
LI N N, SUO X L, ZHANG J H, et al. Disrupted functional brain network topology in Parkinson's disease patients with freezing of gait[J]. Neurosci Lett, 2021, 759: 135970. DOI: 10.1016/j.neulet.2021.135970.
[22]
BIJSTERBOSCH J D, VALK S L, WANG D H, et al. Recent developments in representations of the connectome[J]. Neuroimage, 2021, 243: 118533. DOI: 10.1016/j.neuroimage.2021.118533.
[23]
HALLETT M, DE HAAN W, DECO G, et al. Human brain connectivity: clinical applications for clinical neurophysiology[J]. Clin Neurophysiol, 2020, 131(7): 1621-1651. DOI: 10.1016/j.clinph.2020.03.031.
[24]
INSEL T R, CUTHBERT B N. Medicine. brain disorders? precisely[J]. Science, 2015, 348(6234): 499-500. DOI: 10.1126/science.aab2358.
[25]
SUO X L, LEI D, LI L, et al. Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders[J]. J Psychiatry Neurosci, 2018, 43(6): 427. DOI: 10.1503/jpn.170214.
[26]
XIA M R, WOMER F Y, CHANG M, et al. Shared and distinct functional architectures of brain networks across psychiatric disorders[J]. Schizophr Bull, 2019, 45(2): 450-463. DOI: 10.1093/schbul/sby046.
[27]
ZUO C, SUO X L, LAN H, et al. Global alterations of whole brain structural connectome in parkinson's disease: a meta-analysis[J/OL]. Neuropsychol Rev, 2022 [2022-10-12]. https://pubmed.ncbi.nlm.nih.gov/36125651/. DOI: 10.1007/s11065-022-09559-y.
[28]
TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1): 273-289. DOI: 10.1006/nimg.2001.0978.
[29]
HE W J, XIE Q, WANG Y J, et al. A study of functional brain networks in patients with mild cognitive impairment based on graph theory[J]. Chin J Magn Reson Imaging, 2022, 13(5): 1-5. DOI: 10.12015/issn.1674-8034.2022.05.001.
[30]
WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442. DOI: 10.1038/30918.
[31]
LIANG X, WANG J H, HE Y. Human connectome: structural and functional brain networks[J]. Chin Sci Bull, 2010, 55(16): 1565-1583. DOI: 10.1360/972009-2150.
[32]
HALLQUIST M N, HILLARY F G. Graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world[J]. Netw Neurosci, 2019, 3(1): 1-26. DOI: 10.1162/netn_a_00054.
[33]
CIERI F, YANG Z S, CORDES D, et al. Sex differences of brain functional topography revealed in normal aging and alzheimer's disease cohort[J]. J Alzheimers Dis, 2021, 80(3): 979-984. DOI: 10.3233/JAD-201596.
[34]
FALSAPERLA R, VITALITI G, MARINO S D, et al. Graph theory in paediatric epilepsy: a systematic review[J]. Dialogues Clin Neurosci, 2021, 23(1): 3-13. DOI: 10.1080/19585969.2022.2043128.
[35]
PUETZ V B, PARKER D, KOHN N, et al. Altered brain network integrity after childhood maltreatment: a structural connectomic DTI-study[J]. Hum Brain Mapp, 2017, 38(2): 855-868. DOI: 10.1002/hbm.23423.
[36]
XIONG M R, GU G Q, ZHONG L Q, et al. Study on the changes of fMRI characteristics of task state after receiving short-term antidepressant treatment after the first episode of mild to moderate depression[J]. Mod Pract Med, 2022, 34(7): 887-889. DOI: 10.3969/j.issn.1671-0800.2021.07.017.
[37]
LEI D, LI K M, LI L J, et al. Disrupted functional brain connectome in patients with posttraumatic stress disorder[J]. Radiology, 2015, 276(3): 818-827. DOI: 10.1148/radiol.15141700.
[38]
SUO X L, LEI D, LI W B, et al. Large-scale white matter network reorganization in posttraumatic stress disorder[J]. Hum Brain Mapp, 2019, 40(16): 4801-4812. DOI: 10.1002/hbm.24738.

PREV Multiscale brain abnormalities in young male military patients with depression based on resting-state functional magnetic resonance imaging
NEXT Application value of arterial spin labeling imaging with dual parameters in evaluating collateral circulation and prognosis of acute ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn