Share:
Share this content in WeChat
X
Clinical Article
Comparative study of cardiac function changes before and after coronary artery bypass grafting based on MRI
BAN Chao  MA Xueying  WANG Jian  HE Jinlong  LUO Yitong  LI Bo  NIU Ruilong  GE Lihong 

Cite this article as: BAN C, MA X Y, WANG J, et al. Comparative study of cardiac function changes before and after coronary artery bypass grafting based on MRI[J]. Chin J Magn Reson Imaging, 2023, 14(3): 95-99, 116. DOI:10.12015/issn.1674-8034.2023.03.016.


[Abstract] Objective Detecting the changes of cardiac function by cardiac magnetic resonance (CMR) before and after coronary artery bypass grafting (CABG), and to analyze the clinical guiding value of CMR in the treatment of coronary heart disease (CHD).Materials and Methods The preoperative and postoperative CMR examination data of 27 patients with CHD treated by CABG were collected. Comparative analysis of left ventricular function parameters before and after operation, such as left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), stroke volume (SV), cardiac output (CO), left ventricular end-diastolic mass (LDVM), left ventricular mean myocardial mass (LVM), heart rate (HR), peak ejection rate (PER), peak ejection time (PET), peak filling rate (PFR), peak filling time (PFT), and standardized left ventricular function parameters (sVM, sEDV, sSV, sPFR, sPER, sESV, sDVM), body surface area (BSA). First, perform S-W test to obtain variables that do not obey normal distribution: LDVM, LVM, PET, sESV, sDVM, BSA (P<0.05); Wilcoxon rank sum test is performed for variables that do not obey normal distribution; other variables are poor values follow a normal distribution row paired samples t-test.Results The left ventricular function parameters of EDV, ESV and SV before CABG were higher than those after operation [(141.38±44.75) mL, (65.64±36.13) mL, (75.74±16.95) mL vs. (120.54±40.37) mL, (56.16±29.37) mL, (64.38±16.98) mL, P<0.05]; LVM before operation was greater than that after operation [132.40 (114.96, 160.82) g vs. 126.78 (100.31, 152.28) g, P<0.05]; HR before CABG was lower than that after operation [(64.19±13.43) beats/min vs. (70.81±12.21) beats/min, P<0.05]; the cardiac filling and ejection data before CABG PER and PFR were lower than those after CABG [(-364.63±78.34) mL/s, (336.56±98.13) mL/s vs. (-333.80±62.76) mL/s, (301.44±76.03) mL/s, P<0.05]; the standardized indexes of left ventricle sEDV, sSV, sPER, sPFR before CABG were lower than those after CABG [(76.66±18.79) mL/m2, (41.65±8.89) mL/m2, (-200.64±41.24) mL/s/m2, (183.94±45.73) mL/s/m2 vs. (65.88±18.93) mL/m2, (35.32±8.49) mL/m2, (-184.17±32.19) mL/s/m2, (162.73±31.02) mL/s/m2, P<0.05], sESV before operation was higher than after operation [30.76 (20.95, 45.23) mL/m2 vs. 29.18 (19.52, 38.69) mL/m2, P<0.05], the differences were statistically significant. The remaining parameters showed no statistically significant preoperative and postoperative differences.Conclusions CMR parameters have obvious research significance for on the changes of cardiac function before and after CABG, and provide guidance for clinical diagnosis and treatment of CHD.
[Keywords] coronary heart disease;cardiac magnetic resonance;magnetic resonance imaging;coronary artery bypass grafting;cardiac function parameters;cardiac function changes

BAN Chao   MA Xueying   WANG Jian   HE Jinlong   LUO Yitong   LI Bo   NIU Ruilong   GE Lihong*  

Department of Imaging Diagnosis, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: Ge LH, E-mail: Lchest@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Science and Technology Plan Project of Inner Mongolia Autonomous Region (No. 202202154).
Received  2022-09-22
Accepted  2023-02-27
DOI: 10.12015/issn.1674-8034.2023.03.016
Cite this article as: BAN C, MA X Y, WANG J, et al. Comparative study of cardiac function changes before and after coronary artery bypass grafting based on MRI[J]. Chin J Magn Reson Imaging, 2023, 14(3): 95-99, 116. DOI:10.12015/issn.1674-8034.2023.03.016.

[1]
ROTH G A, MENSAH G A, JOHNSON C O, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update From the GBD 2019 Study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. DOI: 10.1016/j.jacc.2020.11.010.
[2]
MENSAH G A, ROTH G A, FUSTER V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond[J]. J Am Coll Cardiol, 2019, 74(20): 2529-2532. DOI: 10.1016/j.jacc.2019.10.009.
[3]
DEREJE N. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
[4]
ZHOU M, WANG H, ZENG X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
[5]
WU X, TANG L L, HU Y T, et al. Research progress of MRI radiomics in cardiac disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 113-116. DOI: 10.12015/issn.1674-8034.2021.11.028.
[6]
MATHER A N, FAIRBAIRN T A, BALL S G, et al. Reperfusion haemorrhage as determined by cardiovascular MRI is a predictor of adverse left ventricular remodelling and markers of late arrhythmic risk[J]. Heart, 2011, 97(6): 453-459. DOI: 10.1136/hrt.2010.202028.
[7]
EITEL I, WOHRLE J, SUENKEL H, et al. Intracoronary compared with intravenous bolus abciximab application during primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: cardiac magnetic resonance substudy of the AIDA STEMI trial[J]. J Am Coll Cardiol, 2013, 61(13): 1447-1454. DOI: 10.1016/j.jacc.2013.01.048.
[8]
ARIAN F, AMINI M, MOSXTAFAEI S, et al. Myocardial function prediction after coronary artery bypass grafting using MRI radiomic features and nachine learning algorithms[J]. J Digit Imaging, 2022, 35(6): 1708-1718. DOI: 10.1007/s10278-022-00681-0.
[9]
EMRICH T, HALFMANN M, SCHOEPF U J, et al. CMR for myocardial characterization in ischemic heart disease: state-of-the-art and future developments[J]. Eur Radiol Exp, 2021, 5(1): 1-13. DOI: 10.1186/s41747-021-00208-2.
[10]
HE J, ZHAO S H, LU M J. Application progress of cardiac MRI in heart failure with preserved ejection fraction[J]. Chin J Med Imaging Technol, 2021, 37(7): 1086-1089. DOI: 10.13929/j.issn.1003-3289.2021.07.029.
[11]
OKADA A, NAKAJIMA I, MORITA Y, et al. Diagnostic value of right ventricular dysfunction in tachycardia-iInduced cardiomyopathy using cardiac magnetic resonance imaging[J]. Circ J, 2016, 80(10): 2141-2148. DOI: 10.1253/circj.CJ-16-0532.
[12]
HEYDARI B, KWONG R Y, JEROSCH-HEROLD M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI[J]. Prog Cardiovasc Dis, 2015, 57(6): 615-622. DOI: 10.1016/j.pcad.2015.02.003.
[13]
FALLAHZADEH A, SHEIKHY A, AJAM A, et al. Significance of preoperative left ventricular ejection fraction in 5-year outcome after isolated CABG[J]. J Cardiothorac Surg, 2021, 16(1): 1-9. DOI: 10.1186/s13019-021-01732-3.
[14]
YOKOYAMA Y, FUKUHARA S, MORI M, et al. Network meta-analysis of treatment strategies in patients with coronary artery disease and low left ventricular ejection fraction[J]. J Card Surg, 2021, 36(10): 3834-3842. DOI: 10.1111/jocs.15850.
[15]
KINNEL M, SANGUINETI F, PEZEL T, et al. Prognostic value of vasodilator stress perfusion CMR in patients with previous coronary artery bypass graft[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(11): 1264-1272. DOI: 10.1093/ehjci/jeaa316.
[16]
KWONG R Y, CARDOSO R, JEROSCH-HEROLD M. Quantitative CMR perfusion in patients after CABG[J]. J Am Coll Cardiol, 2022, 79(12): 1152-1154. DOI: 10.1016/j.jacc.2022.01.025.
[17]
MORITA Y, KUMASAWA J, MIYAMOTO Y, et al. No association of early postoperative heart rate with outcomes after coronary artery bypass grafting[J]. Am J Crit Care, 2022, 31(5): 402-410. DOI: 10.4037/ajcc2022545.
[18]
CLEMENTS I P. Combined systolic and diastolic dysfunction in the presence of preserved left ventricular ejection fraction[J]. Eur J Heart Fail, 2005, 7(4): 490-497. DOI: 10.1016/j.ejheart.2004.06.005.
[19]
RODRIGUEZ-GRANILLO G A, MEJIA-CAMPILLO M, ROSALES M A, et al. Left ventricular filling patterns in patients with previous myocardial infarction measured by conventional cine cardiac magnetic resonance[J]. Int J Cardiovasc Imaging, 2012, 28(4): 795-801. DOI: 10.1007/s10554-011-9883-5.
[20]
CREA F. Percutaneous coronary intervention vs. coronary artery bypass graft: the saga continues[J]. Eur Heart J, 2022, 43(13): 1273-1276. DOI: 10.1093/eurheartj/ehac118.
[21]
TANG Y, ZHAO S H. Interpretation of 2022 SCMR cardiovascular magnetic resonance examination report guidelines[J]. Chin J Magn Reson Imaging, 2022, 13(11): 42-47. DOI: 10.12015/issn.1674-8034.20211.008.
[22]
ROTH G A, DWYER-LINDGREN L, BERTOZZI-VILLA A, et al. Trends and patterns of geographic variation in cardiovascular mortality among US counties, 1980-2014[J]. JAMA, 2017, 317(19): 1976-1992. DOI: 10.1001/jama.2017.4150.
[23]
MENSAH G A, WEI G S, SORLIE P D, et al. Decline in cardiovascular mortality: Possible causes and implications[J]. Circ Res, 2017, 120(2): 366-380. DOI: 10.1161/CIRCRESAHA.116.309115.
[24]
ZHANG J, JIANG T, HOU Y, et al. Five-year outcomes comparing percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass grafting in patients with left main coronary artery disease: A systematic review and meta-analysis[J]. Atherosclerosis, 2020, 308: 50-56. DOI: 10.1016/j.atherosclerosis.2020.06.024.
[25]
EL-ANDARI R, NAGENDRAN J, HONG Y, et al. Percutaneous coronary intervention versus coronary artery bypass grafting for patients with three vessel coronary artery disease: A comparison of centers in the same jurisdiction with differing multidisciplinary heart team approaches[J/OL]. Ann Surg, 2022 [2022-09-21]. https://pubmed.ncbi.nlm.nih.gov/35796644/. DOI: 10.1097/SLA.0000000000005513.
[26]
SEVERINO P, D'AMATO A, PUCCI M, et al. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction[J/OL]. Int J Mol Sci, 2020, 21(21): 8118 [2022-09-21]. https://pubmed.ncbi.nlm.nih.gov/33143256/. DOI: 10.3390/ijms21218118.
[27]
WANG H, ZHANG B, WU W C, et al. Change of left ventricular geometric pattern in patients with preserved ejection fraction undergoing coronary artery bypass grafting[J]. J Cardiovasc Transl Res, 2022, 15(6): 1444-1454. DOI: 10.1007/s12265-022-10249-6.
[28]
DENG Q, YUE W J, SUN J Y. Assessment of left ventricular diastolic function by cardiac magnetic resonance imaging and its research progress[J]. Chin J Magn Reson Imaging, 2021, 12(7): 110-113. DOI: 10.12015/issn.1674-8034.2021.07.026.

PREV Value of cardiac magnetic resonance feature tracking in the evaluation of ventricular function in uncomplicated obesity subjects
NEXT The value of compression-sensing magnetic resonance cholangiopancreatography in diagnosing benign and malignant obstruction of common bile duct
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn