Share:
Share this content in WeChat
X
Clinical Article
Evaluation of fetal spinal anatomy and vertebral deformity with 3 T magnetic resonance three-dimensional T2-weighted fast field echo sequence
HE Shuang  LEI Qiang  WANG Fang  ZHAO Xiaoli  WANG Zhigang  LAI Hua  WEN Xilin 

Cite this article as: HE S, LEI Q, WANG F, et al. Evaluation of fetal spinal anatomy and vertebral deformity with 3 T magnetic resonance three-dimensional T2-weighted fast field echo sequence[J]. Chin J Magn Reson Imaging, 2023, 14(3): 111-116. DOI:10.12015/issn.1674-8034.2023.03.019.


[Abstract] Objective To analyze the value of three-dimensional T2-weighted fast field echo (3D-T2*-FFE) in fetal spinal anatomy and vertebral deformity.Materials and Methods Fourty-six middle and late pregnant women, whose prenatal ultrasound showed abnormal fetal vertebral bodies or unclear spine parts, were consecutively enrolled. All fetuses underwent corresponding spinal MRI examination on a 3 T MR with a 16-channel body matrix coil. The scanning MR sequences included 3D-T2*-FFE, two-dimensional single shot fast spin echo (2D SSH TSE) and two-dimensional balance turbo fast field echo (2D BTFE), region of interest (ROI) was carefully delineated for all cases to calculate the signal difference ratio of the corresponding vertebral bodies and intervertebral discs in the cervical, thoracic and lumbar segments with the three sequences respectively to evaluate image contrast.Results Compared with 2D SSH TSE sequence and 2D BTFE sequence, 3D-T2*-FFE sequence could obtain better image quality of fetal cervical vertebra. The image quality of 2D BTFE and 3D-T2*-FFE sequence was superior to that of 2D SSH TSE sequence in fetal thoracic vertebra and lumbosacral vertebra. The signal difference ratio values of 3D-T2*-FFE and 2D BTFE sequences were higher than those of 2D SSH TSE sequences, and the difference was statistically significant (P<0.05); The signal difference ratio values of thoracic vertebra and lumbar vertebra showed no significant difference in each sequence (P>0.05).Conclusions 3D-T2*-FFE sequences have better imaging effects on fetal vertebra under 3 T MRI, but 3D-T2*-FFE sequences can display more anatomical details of the spine. It is not affected by fetal position, and the scanning time is short, so it can be used as an important complementary sequence in clinical MRI of fetal spine.
[Keywords] prenatal diagnosis;fetal vertebra;vertebral deformity;magnetic resonance imaging;three-dimensional imaging;T2-weighted fast field echo

HE Shuang   LEI Qiang   WANG Fang   ZHAO Xiaoli   WANG Zhigang   LAI Hua   WEN Xilin*  

Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Wen XL, E-mail: xilin.wen@163.com

Conflicts of interest   None.

Received  2022-07-28
Accepted  2023-02-23
DOI: 10.12015/issn.1674-8034.2023.03.019
Cite this article as: HE S, LEI Q, WANG F, et al. Evaluation of fetal spinal anatomy and vertebral deformity with 3 T magnetic resonance three-dimensional T2-weighted fast field echo sequence[J]. Chin J Magn Reson Imaging, 2023, 14(3): 111-116. DOI:10.12015/issn.1674-8034.2023.03.019.

[1]
NAGARAJ U D, BIERBRAUER K S, STEVENSON C B, et al. Spinal imaging findings of open spinal dysraphisms on fetal and postnatal MRI[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1947-1952. DOI: 10.3174/ajnr.A5760.
[2]
PAOLETTI D, ROBERTSON M, SIA S B. A sonographic approach to prenatal classification of congenital spine anomalies[J]. Australas J Ultrasound Med, 2014, 17(1): 20-37. DOI: 10.1002/j.2205-0140.2014.tb00081.x.
[3]
VON KOCH C S, GLENN O A, GOLDSTEIN R B, et al. Fetal magnetic resonance imaging enhances detection of spinal cord anomalies in patients with sonographically detected bony anomalies of the spine[J]. J Ultrasound Med, 2005, 24(6): 781-789. DOI: 10.7863/jum.2005.24.6.781.
[4]
Pediatric Group of Chinese Society of Radiology Chinese Medical Association, Radiology Group of Chinese Society of Pediatric Chinese Medical Association. Chinese expert consensus on fetal MRI[J]. Chin J Radiol, 2020, 54(12): 1153-1161. DOI: 10.3760/cma.j.cn112149-20200605-00779.
[5]
EGLOFF A, BULAS D. Magnetic resonance imaging evaluation of fetal neural tube defects[J]. Semin Ultrasound CT MR, 2015, 36(6): 487-500. DOI: 10.1053/j.sult.2015.06.004.
[6]
NEMEC S F, NEMEC U, BRUGGER P C, et al. MR imaging of the fetal musculoskeletal system[J]. Prenat Diagn, 2012, 32(3): 205-213. DOI: 10.1002/pd.2914.
[7]
HUANG Y L, WONG A M, LIU H L, et al. Fetal magnetic resonance imaging of normal spinal cord: evaluating cord visualization and conus medullaris position by T2-weighted sequences[J]. Biomed J, 2014, 37(4): 232-236. DOI: 10.4103/2319-4170.125649.
[8]
TANG X, BAI G Y, WANG H, et al. A comparison of the accuracy of fetal magnetic resonance imaging and ultrasonography for the diagnosis of fetal congenital malformations of the spine and spinal cord[J]. Prenat Diagn, 2022, 42(10): 1295-1302. DOI: 10.1002/pd.6209.
[9]
YANG A, XIAO X H, WANG Z L, et al. Carotid wall imaging with 3D_T2_FFE: sequence parameter optimization and comparison with 3D_T2_SPACE[J/OL]. Sci Rep, 2021, 11(1): 2255 [2022-07-03]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33500428&query_hl=1. DOI: 10.1038/s41598-021-81309-1.
[10]
XIAO L, SIU C W, YEUNG K, et al. MRI of the cervical spine with 3D gradient echo sequence at 3 T: initial experience[J]. Clin Radiol, 2015, 70(9): 926-931. DOI: 10.1016/j.crad.2015.05.012.
[11]
VICTORIA T, JOHNSON A M, EDGAR J C, et al. Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength?[J]. AJR Am J Roentgenol, 2016, 206(1): 195-201. DOI: 10.2214/AJR.14.14205.
[12]
YAN X H, BAO Y W, FANG J C, et al. Comparative study of TrueFISP and HASTE sequences in fetal vertebra imaging on 3.0T magnetic resonance[J]. Radiol Pract, 2020, 35(6): 768-772. DOI: 10.13609/j.cnki.1000-0313.2020.06.014.
[13]
COLLERAN G C, KYNCL M, GAREL C, et al. Fetal magnetic resonance imaging at 3 Tesla - the European experience[J]. Pediatr Radiol, 2022, 52(5): 959-970. DOI: 10.1007/s00247-021-05267-6.
[14]
YIN X, ZHAO X, LU L, et al. Fetal magnetic resonance imaging of lumbar spine development in vivo: a retrospective study[J]. Childs Nerv Syst, 2022, 38(11): 2113-2118. DOI: 10.1007/s00381-022-05645-x.
[15]
GOODALL A F, BARRETT A, WHITBY E, et al. T2*-weighted MRI produces viable fetal "Black-Bone" contrast with significant benefits when compared to current sequences[J/OL]. Br J Radiol, 2021, 94(1123): 20200940 [2022-07-03]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33989027&query_hl=1. DOI: 10.1259/bjr.20200940.
[16]
BOHILTEA R E, DUCU I, MIHAI B M, et al. First-trimester diagnosis of supernumerary hemivertebra[J/OL]. Diagnostics (Basel), 2022, 12(2): 373 [2022-07-03]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=35204464&query_hl=1. DOI: 10.3390/diagnostics12020373.
[17]
ZHANG S, YUAN X S, PENG Z, et al. Normal fetal development of the cervical, thoracic, and lumbar spine: a postmortem study based on magnetic resonance imaging[J]. Prenat Diagn, 2021, 41(8): 989-997. DOI: 10.1002/pd.5984.
[18]
MU W J, HE M, LEI T, et al. Measurement of the Cobb angle by 3D ultrasound: a valuable additional method for the prenatal evaluation of congenital scoliosis[J]. Quant Imaging Med Surg, 2022, 12(5): 2805-2812. DOI: 10.21037/qims-21-558.
[19]
GOBBI D, ZANATTA C, ZANAROTTI R, et al. Currarino Syndrome in homozygous twins detected by following ultrasound during the fetal period[J]. Pediatr Int, 2021, 63(9): 1131-1133. DOI: 10.1111/ped.14622.
[20]
ABOUGHALIA H, NODA S, CHAPMAN T, et al. Multimodality imaging evaluation of fetal spine anomalies with postnatal correlation[J]. Radiographics, 2021, 41(7): 2176-2192. DOI: 10.1148/rg.2021210066.
[21]
NEMEC S F, SCHWARZ-NEMEC U, PRAYER D, et al. Human femur development in fetal growth restriction as observed on prenatal magnetic resonance imaging[J/OL]. Ultrasound Obstet Gynecol, 2022 [2022-07-03]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=36445348&query_hl=1. DOI: 10.1002/uog.26133.
[22]
FERREIRA C, SANTOS A P, FONSECA J. Currarino syndrome - a pre and post natal diagnosis correlation: case report and literature review[J]. J Matern Fetal Neonatal Med, 2022, 35(25): 5224-5226. DOI: 10.1080/14767058.2021.1876021.
[23]
BAADSGAARD K, HANSEN D N, PETERS D A, et al. T2* weighted fetal MRI and the correlation with placental dysfunction[J]. Placenta, 2023, 131: 90-97. DOI: 10.1016/j.placenta.2022.12.002.
[24]
PASSIAS P G, POORMAN G W, JALAI C M, et al. Incidence of congenital spinal abnormalities among pediatric patients and their association with scoliosis and systemic anomalies[J/OL]. J Pediatr Orthop, 2019, 39(8): e608-e613 [2022-07-03]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31393300&query_hl=1. DOI: 10.1097/BPO.0000000000001066.
[25]
YU H Y, TANG D E, WU H W, et al. Integrated single-cell analyses decode the developmental landscape of the human fetal spine[J/OL]. iScience, 2022, 25(7): 104679 [2022-07-03]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=35832888&query_hl=1. DOI: 10.1016/j.isci.2022.104679.
[26]
HALL J G. Fetal cervical hyperextension in arthrogryposis[J]. Am J Med Genet C Semin Med Genet, 2019, 181(3): 354-362. DOI: 10.1002/ajmg.c.31727.
[27]
DRACOPOULOS C, GEMBICKI M, SCHARF J L, et al. Presence of cervical vertebral anomalies with concomitant non-communicating Hydrocephalus and multicystic kidney in a female fetus: where VACTERL-H meets MURCS[J]. Fetal Pediatr Pathol, 2022, 41(5): 871-880. DOI: 10.1080/15513815.2021.1994068.
[28]
KASPIRIS A, GRIVAS T B, WEISS H R, et al. Surgical and conservative treatment of patients with congenital scoliosis: α search for long-term results[J]. Scoliosis, 2011, 6: 12 [2022-07-03]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=21639924&query_hl=1. DOI: 10.1186/1748-7161-6-12.
[29]
BISHT R U, BELTHUR M V, SINGLETON I M, et al. Prenatal diagnosis of Sprengel's deformity in a patient with Klippel-Feil Syndrome[J]. Clin Imaging, 2021, 78: 45-50. DOI: 10.1016/j.clinimag.2021.02.041.
[30]
LIU M R, ZHANG W, ZHAO X Y, et al. Application of three-dimensional ultrasound in assessing the development of fetal spinal cord and spine[J]. Chin J Med Phys, 2021, 38(4): 452-455. DOI: 10.3969/j.issn.1005-202X.2021.04.011.
[31]
GILLIGAN L A, CALVO-GARCIA M A, WEAVER K N, et al. Fetal magnetic resonance imaging of skeletal dysplasias[J]. Pediatr Radiol, 2020, 50(2): 224-233. DOI: 10.1007/s00247-019-04537-8.
[32]
CAI X Y, CHEN X, WEI X H, et al. Use of magnetic resonance imaging in the diagnosis of fetal vertebral abnormalities in utero: a single-center retrospective cohort study[J]. Quant Imaging Med Surg, 2022, 12(6): 3391-3405. DOI: 10.21037/qims-21-1070.

PREV The value of diffusion-relaxation correlation spectrum imaging the in differential diagnosis of early and advanced squamous cervical carcinoma
NEXT Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn