Share:
Share this content in WeChat
X
Review
MRI research progress in attention deficit hyperactivity disorder
BIN Bolin  ZHOU Xiaoyan  DENG Demao 

Cite this article as: BIN B L, ZHOU X Y, DENG D M. MRI research progress in attention deficit hyperactivity disorder[J]. Chin J Magn Reson Imaging, 2023, 14(3): 149-152, 169. DOI:10.12015/issn.1674-8034.2023.03.027.


[Abstract] Attention deficit hyperactivity disorder (ADHD) can cause various adjustment disorders in patients. At present, the pathogenesis has not been clarified. Abnormal brain structure and function may be the main cause of the disease. MRI can reflect the abnormal brain structure, function and metabolism in patients with ADHD, and has a good application prospect in explaining its pathogenesis. In this article, we summarize that recent 5-year MRI study on brain structure (brain volume, brain surface area and diffusion tensor imaging), brain function (resting-state functional MRI, task-state functional MRI) and brain metabolism (positron emission tomography-MRI, magnetic resonance spectroscopy) in ADHD patients. The most consistent anatomical findings were decreased volume of the right basal ganglia and medial temporal lobe, thinning of the right frontoparietal cortex, and thickening of the occipital cortex. The most prominent findings in the study of brain function and metabolism are abnormalities in the frontal-striatal circuit and the default mode network. Abnormalities in different brain regions and networks correspond to the symptoms of ADHD, which may be used as biomarkers for individualized intervention.
[Keywords] attention deficit hyperactivity disorder;neuroimaging;magnetic resonance imaging;structural magnetic resonance imaging;functional magenetic resonance imaging;diffusion tensor imaging

BIN Bolin1   ZHOU Xiaoyan2   DENG Demao2*  

1 Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China

2 Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China

Corresponding author: Deng DM, E-mail: demaodeng@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82060315); Guangxi Key Research and Development Plan Project(No. Gui Ke AB22080053).
Received  2022-10-28
Accepted  2023-03-03
DOI: 10.12015/issn.1674-8034.2023.03.027
Cite this article as: BIN B L, ZHOU X Y, DENG D M. MRI research progress in attention deficit hyperactivity disorder[J]. Chin J Magn Reson Imaging, 2023, 14(3): 149-152, 169. DOI:10.12015/issn.1674-8034.2023.03.027.

[1]
POSNER J, POLANCZYK G V, SONUGA-BARKE E. Attention-deficit hyperactivity disorder[J]. Lancet, 2020, 395(10222): 450-462. DOI: 10.1016/S0140-6736(19)33004-1.
[2]
SAYAL K, PRASAD V, DALEY D, et al. ADHD in children and young people: prevalence, care pathways, and service provision[J]. Lancet Psychiatry, 2018, 5(2): 175-186. DOI: 10.1016/S2215-0366(17)30167-0.
[3]
MCGRATH L M, STOODLEY C J. Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies[J/OL]. J of Neurodev Disord, 2019, 11(1): 31 [2022-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873566. DOI: 10.1186/s11689-019-9287-8.
[4]
MOONEY M A, BHATT P, HERMOSILLO R J M, et al. Smaller total brain volume but not subcortical structure volume related to common genetic risk for ADHD[J]. Psychol Med, 2021, 51(8): 1279-1288. DOI: 10.1017/S0033291719004148.
[5]
HOOGMAN M, BRALTEN J, HIBAR D P, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis[J]. Lancet Psychiatry, 2017, 4(4): 310-319. DOI: 10.1016/S2215-0366(17)30049-4.
[6]
MU S, WU H, ZHANG J, et al. Structural Brain Changes and Associated Symptoms of ADHD Subtypes in Children[J]. Cereb Cortex, 2022, 32(6): 1152-1158. DOI: 10.1093/cercor/bhab276.
[7]
POSTEMA M C, HOOGMAN M, AMBROSINO S, et al. Analysis of structural brain asymmetries in attention‐deficit/hyperactivity disorder in 39 datasets[J]. J Child Psychol Psychiatry, 2021, 62(10): 1202-1219. DOI: 10.1111/jcpp.13396.
[8]
FU C, CHEN S, QIAN A, et al. Larger thalamus correlated with inattentive severity in the inattentive subtype of ADHD without comorbidity[J/OL]. Psychiatry Res, 2021, 304: 114079 [2022-07-27]. https://linkinghub.elsevier.com/retrieve/pii/S0165178121003760. DOI: 10.1016/j.psychres.2021.114079.
[9]
TANG X, SEYMOUR K E, CROCETTI D, et al. Response control correlates of anomalous basal ganglia morphology in boys, but not girls, with attention-deficit/hyperactivity disorder[J]. Behav Brain Res, 2019, 367: 117-127. DOI: 10.1016/j.bbr.2019.03.036.
[10]
JACOBSON L A, CROCETTI D, DIRLIKOV B, et al. Anomalous Brain Development Is Evident in Preschoolers With Attention-Deficit/Hyperactivity Disorder[J]. J Int Neuropsychol Soc, 2018, 24(6): 531-539. DOI: 10.1017/S1355617718000103.
[11]
LUKITO S, NORMAN L, CARLISI C, et al. Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder[J]. Psychol Med, 2020, 50(6): 894-919. DOI: 10.1017/S0033291720000574.
[12]
SELE S, LIEM F, MÉRILLAT S, et al. Age-related decline in the brain: a longitudinal study on inter-individual variability of cortical thickness, area, volume, and cognition[J/OL]. Neuroimage, 2021, 240: 118370 [2022-10-29]. https://linkinghub.elsevier.com/retrieve/pii/S1053811921006467. DOI: 10.1016/j.neuroimage.2021.118370.
[13]
AMBROSINO S, DE ZEEUW P, WIERENGA L M, et al. What can Cortical Development in Attention-Deficit/Hyperactivity Disorder Teach us About the Early Developmental Mechanisms Involved?[J]. Cereb Cortex, 2017, 27(9): 4624-4634. DOI: 10.1093/cercor/bhx182.
[14]
ALMEIDA L G, RICARDO-GARCELL J, PRADO H, et al. Reduced right frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical variables: A cross-sectional study[J]. J Psychiatr Res, 2010, 44(16): 1214-1223. DOI: 10.1016/j.jpsychires.2010.04.026.
[15]
HOOGMAN M, MUETZEL R, GUIMARAES J P, et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples[J]. Am J Psychiatry, 2019, 176(7): 531-542. DOI: 10.1176/appi.ajp.2019.18091033.
[16]
ALMEIDA M L, PRADO A H, MARTINEZ G R, et al. Brain cortical thickness in ADHD: age, sex, and clinical correlations[J]. J Atten Disord, 2013, 17(8): 641-654. DOI: 10.1177/1087054711434351.
[17]
GHAREHGAZLOU A, VANDEWOUW M, ZIOLKOWSKI J, et al. Cortical Gyrification Morphology in ASD and ADHD: Implication for Further Similarities or Disorder-Specific Features?[J]. Cereb Cortex, 2022, 32(11): 2332-2342. DOI: 10.1093/cercor/bhab326.
[18]
CONNAUGHTON M, WHELAN R, O'HANLON E, et al. White matter microstructure in children and adolescents with ADHD[J/OL]. Neuroimage Clin, 2022, 33: 102957 [2022-07-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842077. DOI: 10.1016/j.nicl.2022.102957.
[19]
WU W, MCANULTY G, HAMODA H M, et al. Detecting microstructural white matter abnormalities of frontal pathways in children with ADHD using advanced diffusion models[J]. Brain Imaging Behav, 2019, 14(4): 981-997. DOI: 10.1007/s11682-019-00108-5.
[20]
ALBAUGH M D, HUDZIAK J J, ING A, et al. White matter microstructure is associated with hyperactive/inattentive symptomatology and polygenic risk for attention-deficit/hyperactivity disorder in a population-based sample of adolescents[J]. Neuropsychopharmacology, 2019, 44(9): 1597-1603. DOI: 10.1038/s41386-019-0383-y.
[21]
VERSACE A, JONES N P, JOSEPH H M, et al. White matter abnormalities associated with ADHD outcomes in adulthood[J]. Mol Psychiatry, 2021, 26(11): 6655-6665. DOI: 10.1038/s41380-021-01153-7.
[22]
FUELSCHER I, HYDE C, ANDERSON V, et al. White matter tract signatures of fiber density and morphology in ADHD[J]. Cortex, 2021, 138: 329-340 [2022-07-27]. https://linkinghub.elsevier.com/retrieve/pii/S0010945221000733. DOI: 10.1016/j.cortex.2021.02.015.
[23]
CHA J, FEKETE T, SICILIANO F, et al. Neural Correlates of Aggression in Medication-Naive Children with ADHD: Multivariate Analysis of Morphometry and Tractography[J]. Neuropsychopharmacology, 2015, 40(7): 1717-1725. DOI: 10.1038/npp.2015.18.
[24]
BU X, CAO M, HUANG X, et al. The structural connectome in ADHD[J]. Psychoradiology, 2021, 1(4): 257-271. DOI: 10.1093/psyrad/kkab021.
[25]
LV H, WANG Z, TONG E, et al. Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[26]
NORMAN L J, CARLISI C, LUKITO S, et al. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder[J]. JAMA Psychiatry, 2016, 73(8): 815-825. DOI: 10.1001/jamapsychiatry.2016.0700.
[27]
CORTESE S, KELLY C, CHABERNAUD C, et al. Toward Systems Neuroscience of ADHD: A Meta-Analysis of 55 fMRI Studies[J]. Am J Psychiatry, 2012, 169(10): 1038-1055. DOI: 10.1176/appi.ajp.2012.11101521.
[28]
SUTCUBASI B, METIN B, KURBAN M K, et al. Resting-state network dysconnectivity in ADHD: A system-neuroscience-based meta-analysis[J]. World J Biol psychiatry, 2020, 21(9): 662-672. DOI: 10.1080/15622975.2020.1775889.
[29]
AHMADI M, KAZEMI K, KUC K, et al. Resting state dynamic functional connectivity in children with attention deficit/hyperactivity disorder[J/OL]. J Neural Eng, 2021, 18(4) [2022-07-27]. https://pubmed.ncbi.nlm.nih.gov/34289458/. DOI: 10.1088/1741-2552/ac16b3.
[30]
GUO X, YAO D, CAO Q, et al. Shared and distinct resting functional connectivity in children and adults with attention-deficit/hyperactivity disorder[J/OL]. Transl Psychiatry, 2020, 10(1): 65 [2022-07-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026417. DOI: 10.1038/s41398-020-0740-y.
[31]
YANG Y, YANG B, ZHANG L, et al. Dynamic Functional Connectivity Reveals Abnormal Variability in the Amygdala Subregions of Children With Attention-Deficit/Hyperactivity Disorder[J/OL]. Front Neurosci, 2021, 15: 648143 [2022-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514188. DOI: 10.3389/fnins.2021.648143.
[32]
ARFUSO M, SALAS R, CASTELLANOS F X, et al. Evidence of Altered Habenular Intrinsic Functional Connectivity in Pediatric ADHD[J]. J Atten Disord, 2021, 25(5): 749-757. DOI: 10.1177/1087054719843177.
[33]
WHITFIELD-GABRIELI S, WENDELKEN C, NIETO-CASTAÑÓN A, et al. Association of Intrinsic Brain Architecture With Changes in Attentional and Mood Symptoms During Development[J]. JAMA Psychiatry, 2020, 77(4): 378-386. DOI: 10.1001/jamapsychiatry.2019.4208.
[34]
SÖRÖS P, HOXHAJ E, BOREL P, et al. Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI[J/OL]. BMC Psychiatry, 2019, 19(1): 43 [2022-7-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347794. DOI: 10.1186/s12888-019-2031-9.
[35]
LOU F, TAO J, ZHOU R, et al. Altered Variability and Concordance of Dynamic Resting-State fMRI Indices in Patients With Attention Deficit Hyperactivity Disorder[J/OL]. Front Neurosci, 2021, 15: 731596 [2022-07-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481633.
[36]
DAMIANI S, TARCHI L, SCALABRINI A, et al. Beneath the surface: hyper-connectivity between caudate and salience regions in ADHD fMRI at rest[J]. Eur Child Adolesc Psychiatry, 2021, 30(4): 619-631. DOI: 10.1007/s00787-020-01545-0.
[37]
MASSAT I, SLAMA H, VILLEMONTEIX T, et al. Hyperactivity in motor response inhibition networks in unmedicated children with attention deficit-hyperactivity disorder[J]. World J Biol Psychiatry, 2018, 19(2): 101-111. DOI: 10.1080/15622975.2016.1237040.
[38]
SAMEA F, SOLUKI S, NEJATI V, et al. Brain alterations in children/adolescents with ADHD revisited: A neuroimaging meta-analysis of 96 structural and functional studies[J]. Neurosci Biobehav Rev, 2019, 100: 1-8. DOI: 10.1016/j.neubiorev.2019.02.011.
[39]
VIERING T, NAAIJEN J, VAN ROOIJ D, et al. Amygdala reactivity and ventromedial prefrontal cortex coupling in the processing of emotional face stimuli in attention-deficit/hyperactivity disorder[J]. Eur Child Adolesc Psychiatry, 2022, 31(12): 1895-1907. DOI: 10.1007/s00787-021-01809-3.
[40]
KOLODNY T, MEVORACH C, STERN P, et al. Fronto-parietal engagement in response inhibition is inversely scaled with attention-deficit/hyperactivity disorder symptom severity[J/OL]. Neuroimage Clin, 2020, 25: 102119 [2022-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928458. DOI: 10.1016/j.nicl.2019.102119.
[41]
PARK B, KIM M, SEO J, et al. Connectivity Analysis and Feature Classification in Attention Deficit Hyperactivity Disorder Sub-Types: A Task Functional Magnetic Resonance Imaging Study[J]. Brain Topogr, 2016, 29(3): 429-439. DOI: 10.1007/s10548-015-0463-1.
[42]
PYATIGORSKAYA N, HABERT M, ROZENBLUM L. Contribution of PET-MRI in brain diseases in clinical practice[J]. Cur Opin Neurol, 2020, 33(4): 430-438. DOI: 10.1097/WCO.0000000000000841.
[43]
HANSEN F H, SKJØRRINGE T, YASMEEN S, et al. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD[J]. J Clin Invest, 2014, 124(7): 3107-3120. DOI: 10.1172/JCI73778.
[44]
ULKE C, RULLMANN M, HUANG J, et al. Adult attention-deficit/hyperactivity disorder is associated with reduced norepinephrine transporter availability in right attention networks: a (S, S)-O-[11C]methylreboxetine positron emission tomography study[J/OL]. Transl Psychiatry, 2019, 9(1): 301 [2022-07-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858438. DOI: 10.1038/s41398-019-0619-y.
[45]
NAAIJEN J, LYTHGOE D J, ZWIERS M P, et al. Anterior cingulate cortex glutamate and its association with striatal functioning during cognitive control[J]. Eur Neuropsychopharmacol, 2018, 28(3): 381-391. DOI: 10.1016/j.euroneuro.2018.01.002.
[46]
VIDOR M V, PANZENHAGEN A C, MARTINS A R, et al. Emerging findings of glutamate-glutamine imbalance in the medial prefrontal cortex in attention deficit/hyperactivity disorder: systematic review and meta-analysis of spectroscopy studies[J]. Eur Arch Psychiatry Clin Neurosci, 2022, 272(8): 1395-1411. DOI: 10.1007/s00406-022-01397-6.
[47]
MALTEZOS S, HORDER J, COGHLAN S, et al. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study[J/OL]. Transl Psychiatry, 2014, 4(3): e373 [2022-07-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966039. DOI: 10.1038/tp.2014.11.
[48]
HAI T, DUFFY H, LEMAY J, et al. Neurochemical Correlates of Executive Function in Children with Attention-Deficit/Hyperactivity Disorder[J]. J Can Acad Child Adolesc Psychiatry, 2020, 29(1): 15-25.
[49]
MAMIYA P C, RICHARDS T L, EDDEN R A E, et al. Reduced Glx and GABA Inductions in the Anterior Cingulate Cortex and Caudate Nucleus Are Related to Impaired Control of Attention in Attention-Deficit/Hyperactivity Disorder[J/OL]. Int J Mol Sci, 2022, 23(9): 4677 [2022-07-27]. https://pubmed.ncbi.nlm.nih.gov/35563067/. DOI: 10.3390/ijms23094677.
[50]
XIA Q L, JIANG B, LIU D H, et al. The application and prospect of combined functional magnetic resonance imaging and transcranial magnetic stimulation on the modulation of brain functional network[J]. Chin J Magn Reson Imaging, 2022, 13(8): 117-120, 129. DOI: 10.12015/issn.1674-8034.2022.08.026.

PREV Advances in fMRI-based research to explore the central mechanisms of acupuncture in the treatment of insomnia with mood disorders
NEXT Progress of resting-state functional MRI in patients with poststroke aphasia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn