Share:
Share this content in WeChat
X
Review
The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases
WANG Lingli  FENG Xinyi  ZHANG Tianyue  YANG Fan  LI Rui 

Cite this article as: WANG L L, FENG X Y, ZHANG T Y, et al. The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases[J]. Chin J Magn Reson Imaging, 2023, 14(3): 179-183. DOI:10.12015/issn.1674-8034.2023.03.033.


[Abstract] Left atrium (LA) function is closely related to the occurrence, development and prognosis of many cardiac diseases. In recent years, with the development of post-processing software, cardiac magnetic resonance feature tracking (CMR-FT) could non-invasive comprehensive analysis of LA myocardial strain in multiple cardiac diseases, which overcomes the limitation of sole LA volumetric measurement. The change of LA myocardial strain could reflect early cardiac dysfunction and prognosis. This article reviews the application of CMR-FT LA strain in evaluation early functional changes, risk stratification and prognosis of cardiac diseases, aiming to provide a medical imaging basis for further exploring application of LA strain in cardiac diseases.
[Keywords] cardiac diseases;left atrium;strains;cardiac magnetic resonance;magnetic resonance imaging;feature tracking

WANG Lingli   FENG Xinyi   ZHANG Tianyue   YANG Fan   LI Rui*  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, China

Corresponding author: Li R, E-mail: lirui_imag@nsmc.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81801674); Science and Technology Plan Project of Sichuan Province (No. 2021YJ0242).
Received  2022-10-27
Accepted  2023-03-01
DOI: 10.12015/issn.1674-8034.2023.03.033
Cite this article as: WANG L L, FENG X Y, ZHANG T Y, et al. The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases[J]. Chin J Magn Reson Imaging, 2023, 14(3): 179-183. DOI:10.12015/issn.1674-8034.2023.03.033.

[1]
CAU R, CHERCHI V, MICHELETTI G, et al. Potential role of artificial intelligence in cardiac magnetic resonance imaging: can it help clinicians in making a diagnosis?[J]. J Thorac Imaging, 2021, 36(3): 142-148. DOI: 10.1097/RTI.0000000000000584.
[2]
CAU R, BASSAREO P, CHERCHI V, et al. Early diagnosis of chemotherapy-induced cardiotoxicity by cardiac MRI[J/OL]. Eur J Radiol, 2020, 130: 109158 [2022-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X20303478. DOI: 10.1016/j.ejrad.2020.109158.
[3]
ABHAYARATNA W P, SEWARD J B, APPLETON C P, et al. Left atrial size: physiologic determinants and clinical applications[J]. J Am Coll Cardiol, 2006, 47(12): 2357-2363. DOI: 10.1016/j.jacc.2006.02.048.
[4]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J/OL]. Eur Radiol, 2022, 32(7): 4384-4394. [2022-10-01]. https://link.springer.com/article/10.1007/s00330-022-08598-6. DOI: 10.1007/s00330-022-08598-6.
[5]
TELLES F, NANAYAKKARA S, EVANS S, et al. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction[J]. Eur J Heart Fail, 2019, 21(4): 495-505. DOI: 10.1002/ejhf.1399.
[6]
PATHAN F, ZAINAL ABIDIN H A, VO Q H, et al. Left atrial strain: a multi-modality, multi-vendor comparison study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(1): 102-110. DOI: 10.1093/ehjci/jez303.
[7]
LANGE T, SCHUSTER A. Quantification of myocardial deformation applying CMR-feature-tracking-all about the left ventricle?[J]. Curr Heart Fail Rep, 2021, 18(4): 225-239. DOI: 10.1007/s11897-021-00515-0.
[8]
BUGGEY J, HOIT B D. Left atrial strain: measurement and clinical application[J]. Curr Opin Cardiol, 2018, 33(5): 479-485. DOI: 10.1097/HCO.0000000000000537.
[9]
GILMAN G, KHANDHERIA B K, HAGEN M E, et al. Strain rate and strain: a step-by-step approach to image and data acquisition[J]. J Am Soc Echocardiogr, 2004, 17(9): 1011-1020. DOI: 10.1016/j.echo.2004.04.039.
[10]
ISHIZU T, SEO Y, ATSUMI A, et al. Global and regional right ventricular function assessed by novel three-dimensional speckle-tracking echocardiography[J]. J Am Soc Echocardiogr, 2017, 30(12): 1203-1213. DOI: 10.1016/j.echo.2017.08.007.
[11]
ALFUHIED A, MARROW B A, ELFAWAL S, et al. Reproducibility of left atrial function using cardiac magnetic resonance imaging[J]. Eur Radiol, 2021, 31(5): 2788-2797. DOI: 10.1007/s00330-020-07399-z.
[12]
ESHOO S, BOYD A C, ROSS D L, et al. Strain rate evaluation of phasic atrial function in hypertension[J]. Heart, 2009, 95(14): 1184-1191. DOI: 10.1136/hrt.2008.156208.
[13]
SCHUSTER A, HOR K N, KOWALLICK J T, et al. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications[J/OL]. Circ Cardiovasc Imaging, 2016, 9(4): e004077 [2022-10-03]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.115.004077. DOI: 10.1161/CIRCIMAGING.115.004077.
[14]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2022-10-01]. http://jcmr-online.biomedcentral.com/articles/10.1186/s12968-016-0269-7. DOI: 10.1186/s12968-016-0269-7.
[15]
LENG S, GE H, HE J, et al. Long-term prognostic value of cardiac MRI left atrial strain in ST-segment elevation myocardial infarction[J]. Radiology, 2020, 296(2): 299-309. DOI: 10.1148/radiol.2020200176.
[16]
BACKHAUS S J, KOWALLICK J T, STIERMAIER T, et al. Cardiac magnetic resonance myocardial feature tracking for optimized risk assessment after acute myocardial infarction in patients with type 2 diabetes[J]. Diabetes, 2020, 69(7): 1540-1548. DOI: 10.2337/db20-0001.
[17]
SCHUSTER A, BACKHAUS S J, STIERMAIER T, et al. Left atrial function with MRI enables prediction of cardiovascular events after myocardial infarction: insights from the aida stemi and tatort nstemi trials[J]. Radiology, 2019, 293(2): 292-302. DOI: 10.1148/radiol.2019190559.
[18]
ZHANG H, LIU T. Differentiation value of left atrial dysfunction in reperfused chronic myocardial infarction[R/OL]. Res Sq, 2022 [2022-10-01]. https://www.researchsquare.com/article/rs-1770488/v1. DOI: 10.21203/rs.3.rs-1770488/v1.
[19]
FERREIRA V M, SCHULZ-MENGER J, HOLMVANG G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[20]
TRACHTENBERG B H, HARE J M. Inflammatory cardiomyopathic syndromes[J]. Circ Res, 2017, 121(7): 803-818. DOI: 10.1161/CIRCRESAHA.117.310221.
[21]
CAFORIO A L P, PANKUWEIT S, ARBUSTINI E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J, 2013, 34(33): 2636-2648. DOI: 10.1093/eurheartj/eht210.
[22]
YIN C W, LU L, SHI Y J, et al. Cardiac MR feature tracking for evaluating left atrial function of acute myocarditis patients[J]. Chin J Med Imaging Technol, 2022, 38(2): 195-199. DOI: 10.13929/j.issn.1003-3289.2022.02.009.
[23]
DICK A, SCHMIDT B, MICHELS G, et al. Left and right atrial feature tracking in acute myocarditis: a feasibility study[J]. Eur J Radiol, 2017, 89: 72-80. DOI: 10.1016/j.ejrad.2017.01.028.
[24]
DOERNER J, BUNCK A C, MICHELS G, et al. Incremental value of cardiovascular magnetic resonance feature tracking derived atrial and ventricular strain parameters in a comprehensive approach for the diagnosis of acute myocarditis[J]. Eur J Radiol, 2018, 104: 120-128. DOI: 10.1016/j.ejrad.2018.05.012.
[25]
BAEßLER B, TREUTLEIN M, SCHAARSCHMIDT F, et al. A novel multiparametric imaging approach to acute myocarditis using t2-mapping and CMR feature tracking[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 71 [2022-10-06]. http://jcmr-online.biomedcentral.com/articles/10.1186/s12968-017-0387-x. DOI: 10.1186/s12968-017-0387-x.
[26]
SCHNEIDER J N, JAHNKE C, CAVUS E, et al. Feature tracking cardiovascular magnetic resonance reveals recovery of atrial function after acute myocarditis[J].Int J Cardiovasc Imaging, 2022, 38(9): 2003-2012. DOI: 10.1007/s10554-022-02576-1.
[27]
YAMADA A, HASHIMOTO N, FUJITO H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J/OL]. Sci Rep, 2021, 11(1): 10941 [2022-10-05]. https://www.nature.com/articles/s41598-021-90117-6. DOI: 10.1038/s41598-021-90117-6.
[28]
HABIBI M, LIMA J A C, KHURRAM I M, et al. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: cardiac magnetic resonance study[J/OL]. Circ Cardiovasc Imaging, 2015, 8(2): e002769 [2022-10-05]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.114.002769. DOI: 10.1161/CIRCIMAGING.114.002769.
[29]
HOU J, SUN Y, ZHANG L B, et al. Clinical application of cardiac magnetic resonance feature tracking technique in rheumatic mitral stenosis and concurrent atrial fibrillation[J]. Chin J Magn Reson Imaging, 2022, 13(4): 107-110. DOI: 10.12015/issn.1674-8034.2022.04.020.
[30]
BERTELSEN L, DIEDERICHSEN S Z, HAUGAN K J, et al. Left atrial volume and function assessed by cardiac magnetic resonance imaging are markers of subclinical atrial fibrillation as detected by continuous monitoring[J]. Europace, 2020, 22(5): 724-731. DOI: 10.1093/europace/euaa035.
[31]
GASTL M, BEJINARIU A, BEHM P, et al. Role of CMR-derived atrial deformation analysis in the prediction of atrial fibrillation recurrence rate after pulmonary vein isolation[J/OL]. Eur J Radiol, 2022, 155: 110452 [2022-10-06]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X22003023. DOI: 10.1016/j.ejrad.2022.110452.
[32]
KHURRAM I M, HABIBI M, GUCUK IPEK E, et al. Left atrial LGE and arrhythmia recurrence following pulmonary vein isolation for paroxysmal and persistent AF[J]. JACC Cardiovasc Imaging, 2016, 9(2): 142-148. DOI: 10.1016/j.jcmg.2015.10.015.
[33]
KAMMERLANDER A A, KRAIGER J A, NITSCHE C, et al. Global longitudinal strain by CMR feature tracking is associated with outcome in HFPEF[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 1): 1585-1587. DOI: 10.1016/j.jcmg.2019.02.016.
[34]
ROSCA M, LANCELLOTTI P, POPESCU B A, et al. Left atrial function: pathophysiology, echocardiographic assessment, and clinical applications[J]. Heart, 2011, 97(23): 1982-1989. DOI: 10.1136/heartjnl-2011-300069.
[35]
BACKHAUS S J, LANGE T, GEORGE E F, et al. Exercise stress real-time cardiac magnetic resonance imaging for noninvasive characterization of heart failure with preserved ejection fraction: the HFpEF-stress trial[J]. Circulation, 2021, 143(15): 1484-1498. DOI: 10.1161/CIRCULATIONAHA.120.051542.
[36]
KOWALLICK J T, SILVA VIEIRA M, KUTTY S, et al. Left atrial performance in the course of hypertrophic cardiomyopathy: relation to left ventricular hypertrophy and fibrosis[J]. Invest Radiol, 2017, 52(3): 177-185. DOI: 10.1097/RLI.0000000000000326.
[37]
ZHOU D, YANG W J, YANG Y X, et al. Left atrial dysfunction may precede left atrial enlargement and abnormal left ventricular longitudinal function: a cardiac MR feature tracking study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 99 [2022-10-02]. https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-022-02532-w. DOI: 10.1186/s12872-022-02532-w.
[38]
BACKHAUS S J, STIERMAIER T, LANGE T, et al. Atrial mechanics and their prognostic impact in Takotsubo syndrome: a cardiovascular magnetic resonance imaging study[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(9): 1059-1069. DOI: 10.1093/ehjci/jey219.
[39]
HINOJAR R, ZAMORANO J L, FERNÁNDEZ-MÉNDEZ M, et al. Prognostic value of left atrial function by cardiovascular magnetic resonance feature tracking in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2019, 35(6): 1055-1065. DOI: 10.1007/s10554-019-01534-8.
[40]
PU L T, DIAO Y K, WANG J, et al. The predictive value of fast semi-automated left atrial long-axis strain analysis for atrial fibrillation in hypertrophic cardiomyopathy[J]. Eur Radiol, 2023, 33(1): 312-320. DOI: 10.1007/s00330-022-09020-x.
[41]
SHI Y J, LU L, YIN C W, et al. Cardiac MR-feature tracking technique for quantitative analysis of left atrial myocardial strain in dilated cardiomyopathy[J]. Chin J Med Imaging Technol, 2021, 37(11): 1661-1665. DOI: 10.13929/j.issn.1003-3289.2021.11.017.
[42]
LI Y J, XU Y W, TANG S Q, et al. Left atrial function predicts outcome in dilated cardiomyopathy: fast long-axis strain analysis derived from MRI[J]. Radiology, 2022, 302(1): 72-81. DOI: 10.1148/radiol.2021210801.
[43]
BO K R, GAO Y F, ZHOU Z, et al. Incremental prognostic value of left atrial strain in patients with heart failure[J]. ESC Heart Fail, 2022, 9(6): 3942-3953. DOI: 10.1002/ehf2.14106.
[44]
RAAFS A G, VOS J L, HENKENS M T H M, et al. Left atrial strain has superior prognostic value to ventricular function and delayed-enhancement in dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2022, 15(6): 1015-1026. DOI: 10.1016/j.jcmg.2022.01.016.
[45]
STOJANOVSKA J, TOPALOGLU N, FUJIKURA K, et al. Decreased left atrial reservoir strain is associated with adverse outcomes in restrictive cardiomyopathy[J/OL]. J Clin Med, 2022, 11(14): 4116 [2022-10-04]. https://www.mdpi.com/2077-0383/11/14/4116. DOI: 10.3390/jcm11144116.
[46]
HAN P L, SHEN M T, JIANG Y, et al. Prognostic value of left atrial reservoir strain in left ventricular myocardial noncompaction: a 3.0 T cardiac magnetic resonance feature tracking study[J]. J Magn Reson Imaging, 2023, 57(2): 559-575. DOI: 10.1002/jmri.28292.
[47]
SHEN C X, GE J B. Epidemic of cardiovascular disease in China: current perspective and prospects for the future[J]. Circulation, 2018, 138(4): 342-344. DOI: 10.1161/CIRCULATIONAHA.118.033484.
[48]
LI L, CHEN X Y, YIN G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients[J]. Eur Radiol, 2020, 30(2): 702-711. DOI: 10.1007/s00330-019-06397-0.
[49]
SHAO G Z, CAO Y K, CUI Y, et al. Early detection of left atrial and bi-ventricular myocardial strain abnormalities by MRI feature tracking in normotensive or hypertensive T2DM patients with preserved LV function[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 196[2022-10-03]. https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-020-01469-2. DOI: 10.1186/s12872-020-01469-2.
[50]
BERNARDINI A, CAMPOREALE A, PIERONI M, et al. Atrial dysfunction assessed by cardiac magnetic resonance as an early marker of fabry cardiomyopathy[J]. JACC Cardiovasc Imaging, 2020, 13(10): 2262-2264. DOI: 10.1016/j.jcmg.2020.05.011.
[51]
BACKHAUS S J, METSCHIES G, BILLING M, et al. Cardiovascular magnetic resonance imaging feature tracking: impact of training on observer performance and reproducibility[J/OL]. PLoS One, 2019, 14(1): e0210127 [2022-10-02]. https://dx.plos.org/10.1371/journal.pone.0210127. DOI: 10.1371/journal.pone.0210127.
[52]
DOBROVIE M, BARREIRO-PÉREZ M, CURIONE D, et al. Inter-vendor reproducibility and accuracy of segmental left ventricular strain measurements using CMR feature tracking[J]. Eur Radiol, 2019, 29(12): 6846-6857. DOI: 10.1007/s00330-019-06315-4.

PREV The research progress in predicting the efficacy of neoadjuvant chemotherapy for breast cancer according to longitudinal images-based deep learning
NEXT Research progress of radiomics and deep learning in predicting microvascular invasion of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn