Share:
Share this content in WeChat
X
Review
Research progress of amide proton transfer imaging in rectal neoplasms
MA Wenting  WANG Lili  WEI Zhaokun  LEI Jiankai  MA Xiaomei 

Cite this article as: MA W T, WANG L L, WEI Z K, et al. Research progress of amide proton transfer imaging in rectal neoplasms[J]. Chin J Magn Reson Imaging, 2023, 14(3): 189-192, 197. DOI:10.12015/issn.1674-8034.2023.03.035.


[Abstract] Amide proton transfer (APT) imaging is based on the exchange of amide protons in intracellular proteins and polypeptides with hydrogen protons in free water. The more malignant rectal neoplasms, the more intracellular free proteins and polypeptides, and the higher APT signal. We summarizes the relevant domestic and foreign literatures of APT imaging in the diagnosis of rectal neoplasms, hoping to use APT imaging in the clinical early diagnosis and curative effect evaluation, improving the survival rate of rectal neoplasms patients. Domestic and foreign literature studies about APT imaging diagnosis of rectal neoplasms mainly focus on the following aspects: evaluating the histological grade of rectal cancer, predicting the efficacy of chemotherapy, predicting whether the Kirsten rat sarcoma (KRAS) gene is mutated, and predicting the invasion of rectal neoplasms. Compared with conventional MRI sequence, APT imaging can non-invasively predict the invasion of rectal neoplasms and observe the molecular biological changes. At present, APT imaging is most commonly used in brain tumors, the components of cavity organs are complex, the clinical application is limited, so our article summarizes the relevant literature, explores the method of uniform magnetic field, apply APT imaging which a molecular biological examination method to diagnose rectal cancer, and opening a new field about clinical application of APT imaging.
[Keywords] rectal neoplasms;amide proton transfer imaging;chemical exchange saturation transfer;magnetic resonance imaging;diagnosis;grading;prediction

MA Wenting1   WANG Lili1*   WEI Zhaokun1   LEI Jiankai2   MA Xiaomei1  

1 Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China

2 Department of Radiology, Gaotai Hospital of Traditional Chinese Medicine, Zhangye 734300, China

Corresponding author: Wang LL, E-mail: wanglilihq@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Gansu Province Youth Fund Project (No. 20JR5RA143); Scientific Research Fund in Gansu Provincial People's Hospital (No. 20GSSY4-45).
Received  2022-10-23
Accepted  2023-02-28
DOI: 10.12015/issn.1674-8034.2023.03.035
Cite this article as: MA W T, WANG L L, WEI Z K, et al. Research progress of amide proton transfer imaging in rectal neoplasms[J]. Chin J Magn Reson Imaging, 2023, 14(3): 189-192, 197. DOI:10.12015/issn.1674-8034.2023.03.035.

[1]
CHOI Y S, AHN S S, LEE S K, et al. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume[J]. Eur Radiol, 2017, 27(8): 3181-3189. DOI: 10.1007/s00330-017-4732-0.
[2]
JIANG S S, GUO P F, HEO H Y, et al. Radiomics analysis of amide proton transfer-weighted and structural MR images for treatment response assessment in malignant gliomas[J/OL]. NMR Biomed, 2023, 36(1): e4824 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/36057449/PMC36057449. DOI: 10.1002/nbm.4824.
[3]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/36172148/. DOI: 10.3389/fonc.2022.916846.
[4]
TOGAO O, KESSINGER C W, HUANG G, et al. Characterization of lung cancer by amide proton transfer (APT) imaging: an in-vivo study in an orthotopic mouse model[J/OL]. PLoS One, 2013, 8(10): e77019 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/24143199/. DOI: 10.1371/journal.pone.0077019.
[5]
DULA A N, ARLINGHAUS L R, DORTCH R D, et al. Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response[J]. Magn Reson Med, 2013, 70(1): 216-224. DOI: 10.1002/mrm.24450.
[6]
LAW B K H, KING A D, AI Q Y, et al. Head and neck tumors: amide proton transfer MRI[J]. Radiology, 2018, 288(3): 782-790. DOI: 10.1148/radiol.2018171528.
[7]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J]. Radiology, 2022, 305(1): 127-134. DOI: 10.1148/radiol.211804.
[8]
TAKAYAMA Y, NISHIE A, SUGIMOTO M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. MAGMA, 2016, 29(4): 671-679. DOI: 10.1007/s10334-016-0537-4.
[9]
HE Y L, LIN C Y, QI Y F, et al. Three-dimensional amide proton transfer-weighted MR imaging for differentiating cervical squamous cell carcinoma from normal cervix[J]. Radiol Pract, 2019, 34(11): 1198-1201. DOI: 10.13609/j.cnki.1000-0313.2019.11.005.
[10]
FOO L S, HARSTON G, MEHNDIRATTA A, et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003-2020)[J]. Quant Imaging Med Surg, 2021, 11(8): 3797-3811. DOI: 10.21037/qims-20-1339.
[11]
ZHANG H, KANG H Y, ZHAO X N, et al. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development[J]. Eur Radiol, 2016, 26(10): 3368-3376. DOI: 10.1007/s00330-015-4188-z.
[12]
Early Diagnosis and Treatment Group of Oncology Branch of Chinese Medical Association. Expert consensus on early diagnosis and treatment of colorectal cancer in China[J]. Natl Med J China, 2020, 100(22): 1691-1698. DOI: 10.3760/cma.j.cn112137-20190924-02103
[13]
LI L. Using 3D amide proton transfer MR imaging to assess different pathological prognostic factors of rectal adenocarcinoma[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2021. DOI: 10.27044/d.cnki.ggzzu.2021.000191.
[14]
LI L, WANG Z X, FANG J C, et al. Development and clinical application of a new technology derived from chemical exchange saturation transfer[J]. Radiol Pract, 2020, 35(1): 2-8. DOI: 10.13609/j.cnki.1000-0313.2020.01.001.
[15]
VAN ZIJL P C M, YADAV N N. Chemical exchange saturation transfer (CEST): what is in a Name and what isn't?[J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
[16]
YAN S, LI M L, JIN Z Y. Principle and application progress of chemical exchange saturation transfer(CEST) technique[J]. Chin J Magn Reson Imaging, 2016, 7(4): 241-248. DOI: 10.12015/issn.1674-8034.2016.04.001.
[17]
ZHOU J Y, BLAKELEY J O, HUA J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging[J]. Magn Reson Med, 2008, 60(4): 842-849. DOI: 10.1002/mrm.21712.
[18]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[19]
WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
[20]
LIU N. Application progress of amide proton transfer imaging in tumor imaging[J]. J Pract Med Imaging, 2020, 21(1): 50-52. DOI: 10.16106/j.cnki.cn14-1281/r.2020.01.019.
[21]
ZHANG S Y, SUN H Z. Applications of amide proton transfer weighted imaging in tumor[J]. Chin J Magn Reson Imaging, 2019, 10(8): 629-632. DOI: 10.12015/issn.1674-8034.2019.08.015.
[22]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[23]
NISHIE A, TAKAYAMA Y, ASAYAMA Y, et al. Amide proton transfer imaging can predict tumor grade in rectal cancer[J]. Magn Reson Imaging, 2018, 51: 96-103. DOI: 10.1016/j.mri.2018.04.017.
[24]
MILOT L. Amide proton transfer-weighted MRI: insight into cancer cell biology[J]. Radiology, 2022, 305(1): 135-136. DOI: 10.1148/radiol.221376.
[25]
KAMIMURA K, NAKAJO M, YONEYAMA T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions[J]. Jpn J Radiol, 2019, 37(2): 109-116. DOI: 10.1007/s11604-018-0787-3.
[26]
LI J, LIN L J, GAO X M, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J/OL]. Front Oncol, 2021, 11: 783544 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/35047400/. DOI: 10.3389/fonc.2021.783544.
[27]
CHEN W C, LI L, YAN Z X, et al. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(5): 3286-3296. DOI: 10.1007/s00330-020-07397-1.
[28]
NISHIE A, ASAYAMA Y, ISHIGAMI K, et al. Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Gastroenterol Hepatol, 2019, 34(1): 140-146. DOI: 10.1111/jgh.14315.
[29]
JIANG Y H, YOU K Y, QIU X S, et al. Tumor volume predicts local recurrence in early rectal cancer treated with radical resection: a retrospective observational study of 270 patients[J]. Int J Surg, 2018, 49: 68-73. DOI: 10.1016/j.ijsu.2017.11.052.
[30]
DONG W, CHEN A L, LIU A L, et al. Comparation of amide proton transfer-weighted and T2 mapping in quantifying rectal cancer with and without chemotherapy: a preliminary study[J]. Chin J Magn Reson Imaging, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
[31]
CHEN W C, MAO L T, LI L, et al. Predicting treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer using amide proton transfer MRI combined with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 698427 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/34277445/. DOI: 10.3389/fonc.2021.698427.
[32]
GUPTA S, PROVENZALE D, LLOR X, et al. NCCN guidelines insights: genetic/familial high-risk assessment: colorectal, version 2.2019[J]. J Natl Compr Canc Netw, 2019, 17(9): 1032-1041. DOI: 10.6004/jnccn.2019.0044.
[33]
QIU Q. Predicting KRAS gene mutation in rectal cancer by using amide proton transfer and dynamic contrast-enhanced magnetic resonance imaging[D]. Guangzhou: Southern Medical University, 2021. DOI: 10.27003/d.cnki.gojyu.2021.000556.
[34]
YANG Q W, HUO S B, SUI Y J, et al. Mutation status and immunohistochemical correlation of KRAS, NRAS, and BRAF in 260 Chinese colorectal and gastric cancers[J/OL]. Front Oncol, 2018, 8: 487 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/30416987/PMC6212577. DOI: 10.3389/fonc.2018.00487.
[35]
BUM-ERDENE K, GHOZAYEL M K, XU D, et al. Covalent fragment screening identifies Rgl2 RalGEF cysteine for targeted covalent inhibition of ral GTPase activation[J/OL]. ChemMedChem, 2022, 17(6): e202100750 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/35061330/PMC9070689. DOI: 10.1002/cmdc.202100750.
[36]
SHANG A Q, GU C Z, ZHOU C, et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression[J/OL]. Cell Commun Signal, 2020, 18(1): 52 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/32228650/PMC7106821. DOI: 10.1186/s12964-020-0517-1.
[37]
BOYER S, LEE H J, STEELE N, et al. Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GM-CSF-PI3K pathway[J/OL]. Elife, 2022, 11: e73796 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/35156921/PMC8843093. DOI: 10.7554/eLife.73796.
[38]
DI MAGLIANO M P, LOGSDON C D. Roles for KRAS in pancreatic tumor development and progression[J]. Gastroenterology, 2013, 144(6): 1220-1229. DOI: 10.1053/j.gastro.2013.01.071.
[39]
HUR H, TULINA I, CHO M S, et al. Biomarker-based scoring system for prediction of tumor response after preoperative chemoradiotherapy in rectal cancer by reverse transcriptase polymerase chain reaction analysis[J]. Dis Colon Rectum, 2016, 59(12): 1174-1182. DOI: 10.1097/DCR.0000000000000711.
[40]
LI L, CHEN W C, YAN Z X, et al. Comparative analysis of amide proton transfer MRI and diffusion-weighted imaging in assessing p53 and ki-67 expression of rectal adenocarcinoma[J]. J Magn Reson Imaging, 2020, 52(5): 1487-1496. DOI: 10.1002/jmri.27212.
[41]
SUH C H, PARK J E, JUNG S C, et al. Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: a systematic review and meta-analysis[J]. Neuroradiology, 2019, 61(5): 525-534. DOI: 10.1007/s00234-018-02152-2.
[42]
YU H, WEN X R, WU P P, et al. Can amide proton transfer-weighted imaging differentiate tumor grade and predict Ki-67 proliferation status of meningioma?[J]. Eur Radiol, 2019, 29(10): 5298-5306. DOI: 10.1007/s00330-019-06115-w.
[43]
TOGAO O, YOSHIURA T, KEUPP J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158.
[44]
BELLAMY W T. Vascular endothelial growth factor as a target opportunity in hematological malignancies[J]. Curr Opin Oncol, 2002, 14(6): 649-656. DOI: 10.1097/00001622-200211000-00010.
[45]
HE Y L, LIN C Y, QI Y F, et al. Amide proton transfer-weighted MRI of cervical squamous carcinoma: correlation with Ki-67 proliferation status[J]. Chin J Radiol, 2021, 55(5): 517-521. DOI: 10.3760/cma.j.cn112149-20200415-00561.
[46]
DENOST Q, ASSENAT V, VENDRELY V, et al. Oncological strategy following R1 sphincter-saving resection in low rectal cancer after chemoradiotherapy[J]. Eur J Surg Oncol, 2021, 47(7): 1683-1690. DOI: 10.1016/j.ejso.2021.01.031.
[47]
HEO H Y, LEE D H, ZHANG Y, et al. Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging[J]. Magn Reson Med, 2017, 77(5): 1853-1865. DOI: 10.1002/mrm.26264.
[48]
SONG J W, LU W D, LI X J, et al. Application of MRI combined with intraluminal filling coupling agent in preoperative evaluation of rectal cancer[J]. J Hebei Med Univ, 2020, 41(10): 1200-1205. DOI: 10.3969/j.issn.1007-3205.2020.10.018.
[49]
YANG Q, LIU Z, ZOU L Y, et al. Quantification of the impact of Gadolinium agent on amide-proton-transfer weighted MRI: an ex vivo and in vivo study[J]. Chin J Magn Reson Imaging, 2022, 13(6): 81-87. DOI: 10.12015/issn.1674-8034.2022.06.016.

PREV Research progress of radiomics and deep learning in predicting microvascular invasion of hepatocellular carcinoma
NEXT Current status and research progress of MRI diagnosis in deep infiltrating endometriosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn