Share:
Share this content in WeChat
X
Review
Research progress on brain function remodeling mechanism of knee osteoarthritis pain based on resting-state functional magnetic resonance imaging technology
XU Hui  ZHOU Yunfeng  ZHAO Chi  XIE Yuchen  ZHOU Hang  LI Wanyu  GUO Juan 

Cite this article as: XU H, ZHOU Y F, ZHAO C, et al. Research progress on brain function remodeling mechanism of knee osteoarthritis pain based on resting-state functional magnetic resonance imaging technology[J]. Chin J Magn Reson Imaging, 2023, 14(3): 198-202. DOI:10.12015/issn.1674-8034.2023.03.037.


[Abstract] Knee osteoarthritis (KOA) pain makes KOA become one of the main diseases causing functional disability. KOA pain will cause all levels of pain projection neurons in the central nervous system to be in a highly sensitive state, and ultimately induce the functional remodeling of the pain regulation loop in the brain. Resting state functional magnetic resonance imaging (rs-fMRI) makes the mechanism of brain function remodeling of KOA pain intuitive, and provides strong support for the study of central pathological mechanism. Based on the summary of relevant literature in recent 5 years, this paper found that the current research on the mechanism of KOA pain brain function remodeling based on rs-fMRI is mostly focused on local brain regions. It is necessary to further reveal its remodeling mechanism from the perspective of brain function integration with the help of multiple functional and structural imaging methods, and clarify the functional connectivity changes of various brain regions and brain networks caused by KOA pain. This article introduces the development of rs-fMRI and its specific application in the mechanism of KOA pain brain function remodeling, and discusses and prospects its research status, in order to provide new ideas for the clinical management and mechanism research of KOA pain.
[Keywords] knee osteoarthritis;pain;brain;magnetic resonance imaging;functional magnetic resonance imaging;resting-state functional magnetic resonance imaging

XU Hui1, 2   ZHOU Yunfeng2   ZHAO Chi2*   XIE Yuchen3   ZHOU Hang4   LI Wanyu2   GUO Juan2  

1 Department of Tuina, the Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450003, China

2 School of Acupuncture-Moxibustion & Tuina, Henan University of Chinese Medicine, Zhengzhou 450046, China

3 Department of Tuina, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450003, China

4 MRI Room, the Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450003, China

Corresponding author: Zhao C, E-mail: zhaochi1216@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81874513); Henan Provincial Science and Technology Research (No. 222102310214); Henan Provincial Special Project for Scientific Research in Traditional Chinese Medicine (No. 2022ZY1108).
Received  2022-06-23
Accepted  2023-02-06
DOI: 10.12015/issn.1674-8034.2023.03.037
Cite this article as: XU H, ZHOU Y F, ZHAO C, et al. Research progress on brain function remodeling mechanism of knee osteoarthritis pain based on resting-state functional magnetic resonance imaging technology[J]. Chin J Magn Reson Imaging, 2023, 14(3): 198-202. DOI:10.12015/issn.1674-8034.2023.03.037.

[1]
KOPEC J A, SAYRE E C, OKHMATOVSKAIA A, et al. A comparison of three strategies to reduce the burden of osteoarthritis: a population-based microsimulation study[J/OL]. PLoS One, 2021, 16(12): e0261017 [2022-06-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261017. DOI: 10.1371/journal.pone.0261017.
[2]
LUAN L J, EL-ANSARY D, ADAMS R, et al. Knee osteoarthritis pain and stretching exercises: a systematic review and meta-analysis[J]. Physiotherapy, 2022, 114: 16-29. DOI: 10.1016/j.physio.2021.10.001.
[3]
PERRY T A, SEGAL N A, BOWEN C, et al. Foot and ankle pain and risk of incident knee osteoarthritis and knee pain: data from the Multicentre Osteoarthritis Study[J/OL]. Osteoarthr Cartil Open, 2021, 3(4): 100210 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34977597/. DOI: 10.1016/j.ocarto.2021.100210.
[4]
RAFIQ M T, HAMID M S A, HAFIZ E. Short-term effects of strengthening exercises of the lower limb rehabilitation protocol on pain, stiffness, physical function, and body mass index among knee osteoarthritis participants who were overweight or obese: a clinical trial[J/OL]. Sci World J, 2021, 2021: 6672274 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34975349/. DOI: 10.1155/2021/6672274.
[5]
DAINESE P, WYNGAERT K V, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review[J]. Osteoarthritis Cartilage, 2022, 30(4): 516-534. DOI: 10.1016/j.joca.2021.12.003.
[6]
TEKAYA A BEN, ROUACHED L, MAAOUI R, et al. Neuropathic pain in patients with knee osteoarthritis: relation with comorbidities and functional status[J/OL]. Curr Rheumatol Rev, 2022 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/35638278/. DOI: 10.2174/1573397118666220527140626.
[7]
Committee of Orthopaedics and Traumatology of Chinese Association of Traditional Chinese and Western Medicine. Guide to diagnosis and treatment of knee osteoarthritis with integrated traditional Chinese and western medicine[J]. Natl Med J China, 2018, 98(45): 3653-3658. DOI: 10.3760/cma.j.issn.0376-2491.2018.45.005
[8]
LIU J, HUANG H T, PAN J K, et al. The status quo and prospection of integrative therapy of western medicine and traditional Chinese medicine in the step-wise treatment of osteoarthritis at knee[J]. Guangdong Med J, 2019, 40(9): 1189-1192. DOI: 10.13820/j.cnki.gdyx.20185817.
[9]
HUANG D, LIU Y Q, LIANG L S, et al. The diagnosis and therapy of degenerative knee joint disease: expert consensus from the Chinese pain medicine panel[J/OL]. Pain Res Manag, 2018, 2018: 2010129 [2022-06-23]. https://www.hindawi.com/journals/prm/2018/2010129/. DOI: 10.1155/2018/2010129.
[10]
LIAO D F. Epidemiological investigation of osteoarthritis in China[J]. J Minim Invasive Med, 2017, 12(4): 521-524. DOI: 10.11864/j.issn.1673.2017.04.22.
[11]
XU B, XING R L, MAO J, et al. Research progress on pain related risk factors of osteoarthritis[J]. China J Mod Med, 2021, 31(23): 45-48. DOI: 10.3969/j.issn.1005-8982.2021.23.008.
[12]
QIN X R, ZHANG L Z. Mechanisms of osteoarthritis pain[J]. Chin J Gen Pract, 2021, 19(6): 1001-1007. DOI: 10.16766/j.cnki.issn.1674-4152.001971.
[13]
ZHENG J, YUAN P W, KANG W L, et al. Research progress on neural mechanism of chronic pain in osteoarthritis[J]. Chin J Pain Med, 2020, 26(6): 447-450. DOI: 10.3969/j.issn.1006-9852.2020.06.010.
[14]
GUELFI G, CASANO A B, MENCHETTI L, et al. A cross-talk between blood-cell neuroplasticity-related genes and environmental enrichment in working dogs[J/OL]. Sci Rep, 2019, 9(1): 6910 [2022-06-23]. https://www.nature.com/articles/s41598-019-43402-4. DOI: 10.1038/s41598-019-43402-4.
[15]
SENO M D J, ASSIS D V, GOUVEIA F, et al. The critical role of amygdala subnuclei in nociceptive and depressive-like behaviors in peripheral neuropathy[J/OL]. Sci Rep, 2018, 8(1): 13608 [2022-06-23]. https://www.nature.com/articles/s41598-018-31962-w. DOI: 10.1038/s41598-018-31962-w.
[16]
KANG B X, MA J, SHEN J, et al. Altered brain activity in end-stage knee osteoarthritis revealed by resting-state functional magnetic resonance imaging[J/OL]. Brain Behav, 2022, 12(1): e2479 [2022-06-23]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.2479. DOI: 10.1002/brb3.2479.
[17]
CHEN Y, YU C X. Static and dynamic functional connectivity analysis based on resting state functional magnetic resonance imaging and its progress[J]. Chin J Magn Reson Imaging, 2019, 10(8): 637-640. DOI: 10.12015/issn.1674-8034.2019.08.017.
[18]
YUAN Y M, ZHANG L, ZHANG Z G. Research progress in dynamic functional connectivity analysis and clinical application based on resting state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2018, 9(8): 579-588. DOI: 10.12015/issn.1674-8034.2018.08.005.
[19]
BARAN T M, LIN F V, GEHA P. Functional brain mapping in patients with chronic back pain shows age-related differences[J/OL]. Pain, 2022, 163(8): e917-e926 [2022-06-23]. https://journals.lww.com/pain/Abstract/2022/08000/Functional_brain_mapping_in_patients_with_chronic.10.aspx. DOI: 10.1097/j.pain.0000000000002534.
[20]
NEES F, RUTTORF M, FUCHS X, et al. Brain-behaviour correlates of habitual motivation in chronic back pain[J/OL]. Sci Rep, 2020, 10(1): 11090 [2022-06-23]. https://www.nature.com/articles/s41598-020-67386-8. DOI: 10.1038/s41598-020-67386-8.
[21]
CHENG J C, ANZOLIN A, BERRY M, et al. Dynamic functional brain connectivity underlying temporal summation of pain in fibromyalgia[J]. Arthritis Rheumatol, 2022, 74(4): 700-710. DOI: 10.1002/art.42013.
[22]
ELLINGSEN D M, BEISSNER F, MOHER ALSADY T, et al. A picture is worth a thousand words: linking fibromyalgia pain widespreadness from digital pain drawings with pain catastrophizing and brain cross-network connectivity[J]. Pain, 2021, 162(5): 1352-1363. DOI: 10.1097/j.pain.0000000000002134.
[23]
SAWADDIRUK P, PAIBOONWORACHAT S, CHATTIPAKORN N, et al. Alterations of brain activity in fibromyalgia patients[J]. J Clin Neurosci, 2017, 38: 13-22. DOI: 10.1016/j.jocn.2016.12.014.
[24]
GUO Y, LI R Y, LU F Q, et al. Research progress and application of multimodal functional magnetic resonance imaging in vestibular migraine[J]. Chin J Magn Reson Imaging, 2021, 12(4): 86-88. DOI: 10.12015/issn.1674-8034.2021.04.021.
[25]
LIU N, ZHANG Y N, WU J C, et al. An explorative resting-state fMRI study of central mechanism in patients with primary dysmenorrhea during menstrual phase by using the method of degree centrality[J]. Chin J Magn Reson Imaging, 2021, 12(7): 29-33. DOI: 10.12015/issn.1674-8034.2021.07.006.
[26]
NANUS D E, BADOUME A, WIJESINGHE S N, et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets[J/OL]. EBioMedicine, 2021, 72: 103618 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34628351/. DOI: 10.1016/j.ebiom.2021.103618.
[27]
LEE Y, PARK Y S, CHOI N Y, et al. Proteomic analysis reveals commonly secreted proteins of mesenchymal stem cells derived from bone marrow, adipose tissue, and synovial membrane to show potential for cartilage regeneration in knee osteoarthritis[J/OL]. Stem Cells Int, 2021, 2021: 6694299 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34306096/. DOI: 10.1155/2021/6694299.
[28]
LIU Y C, JING J H, YU H R, et al. Expression profiles of long non-coding RNAs in the cartilage of patients with knee osteoarthritis and normal individuals[J/OL]. Exp Ther Med, 2021, 21(4): 365 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/33732338/. DOI: 10.3892/etm.2021.9796.
[29]
WU W, BRYANT A L, HINMAN R S, et al. Walking-related knee contact forces and associations with knee pain across people with mild, moderate and severe radiographic knee osteoarthritis: a cross-sectional study[J]. Osteoarthritis Cartilage, 2022, 30(6): 832-842. DOI: 10.1016/j.joca.2022.02.619.
[30]
WANG Y F, YOU L, CHYR J, et al. Causal discovery in radiographic markers of knee osteoarthritis and prediction for knee osteoarthritis severity with attention-long short-term memory[J/OL]. Front Public Health, 2020, 8: 604654 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/33409263/. DOI: 10.3389/fpubh.2020.604654.
[31]
SON K M, HONG J I, KIM D H, et al. Absence of pain in subjects with advanced radiographic knee osteoarthritis[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 640 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/32993609/. DOI: 10.1186/s12891-020-03647-x.
[32]
CHEN F H, LIU H, XIA J, et al. Synovial fluid and plasma levels of milk fat globule-epidermal growth factor 8 are inversely correlated with radiographic severity of knee osteoarthritis[J]. J Int Med Res, 2019, 47(9): 4422-4430. DOI: 10.1177/0300060519862460.
[33]
GERVAIS-HUPÉ J, POLLICE J, SADI J, et al. Validity of the central sensitization inventory with measures of sensitization in people with knee osteoarthritis[J]. Clin Rheumatol, 2018, 37(11): 3125-3132. DOI: 10.1007/s10067-018-4279-8.
[34]
ROBY N U, PACKHAM T L, MACDERMID J C, et al. Validity of the Central Sensitization Inventory (CSI) through Rasch analysis in patients with knee osteoarthritis[J]. Clin Rheumatol, 2022, 41(10): 3159-3168. DOI: 10.1007/s10067-022-06248-2.
[35]
SONI A, WANIGASEKERA V, MEZUE M, et al. Central sensitization in knee osteoarthritis: relating presurgical brainstem neuroimaging and PainDETECT-based patient stratification to arthroplasty outcome[J]. Arthritis Rheumatol, 2019, 71(4): 550-560. DOI: 10.1002/art.40749.
[36]
SHI A J, LI C L, WU Y, et al. Regional homogeneity of resting-state brain activity in knee osteoarthritis patients with chronic pain[J]. J Reg Anat Oper Surg, 2017, 26(6): 419-422. DOI: 10.11659/jjssx.12E016064.
[37]
LIU T. A study of resting-state functional magnetic resonance imaging (RS-fmri) for chronic pain in knee osteoarthritis[D]. Yan'an: Yan'an University, 2020.
[38]
LIAO X, MAO C P, WANG Y, et al. Brain gray matter alterations in Chinese patients with chronic knee osteoarthritis pain based on voxel-based morphometry[J/OL]. Medicine (Baltimore), 2018, 97(12): e0145 [2022-06-23]. https://doi.org/10.1097/MD.0000000000010145. DOI: 10.1097/MD.0000000000010145.
[39]
GUO H, WANG Y Q, QIU L H, et al. Structural and functional abnormalities in knee osteoarthritis pain revealed with multimodal magnetic resonance imaging[J/OL]. Front Hum Neurosci, 2021, 15: 783355 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34912202/. DOI: 10.3389/fnhum.2021.783355.
[40]
SIMIS M, IMAMURA M, DE MELO P S, et al. Increased motor cortex inhibition as a marker of compensation to chronic pain in knee osteoarthritis[J/OL]. Sci Rep, 2021, 11(1): 24011 [2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/34907209/. DOI: 10.1038/s41598-021-03281-0.
[41]
HU Y, WANG L J, NIE S D. Review on brain functional parcellation based on resting-state functional magnetic resonance imaging data[J]. J Image Graph, 2017, 22(10): 1325-1334. DOI: 10.11834/jig.170081.
[42]
HU X F, ZHANG J Q, JIANG X M, et al. Amplitude of low-frequency oscillations in Parkinson's disease: a 2-year longitudinal resting-state functional magnetic resonance imaging study[J]. Chin Med J (Engl), 2015, 128(5): 593-601. DOI: 10.4103/0366-6999.151652.
[43]
LV H, WANG Z, TONG E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[44]
JIA X Z, SUN J W, JI G J, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at single voxel level[J/OL]. PLoS One, 2020, 15(1): e0227021 [2022-06-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227021. DOI: 10.1371/journal.pone.0227021.
[45]
PUJOL J, MARTÍNEZ-VILAVELLA G, LLORENTE-ONAINDIA J, et al. Brain imaging of pain sensitization in patients with knee osteoarthritis[J]. Pain, 2017, 158(9): 1831-1838. DOI: 10.1097/j.pain.0000000000000985.
[46]
BALIKI M N, GEHA P Y, JABAKHANJI R, et al. A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis[J/OL]. Mol Pain, 2008, 4: 47 [2022-06-23]. https://journals.sagepub.com/doi/10.1186/1744-8069-4-47?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1186/1744-8069-4-47.
[47]
ZHANG H B, WANG J, YAO X Y. The research of chronic pain patient with resting state functional MRI and coxel based morphometry[J]. J Gannan Med Univ, 2014, 34(1): 70-72. DOI: 10.3969/j.issn.1001-5779.2014.01.026.
[48]
XIAO Y, LIU J, HU K, et al. fMRI study on the functional connectivity of nucleus accumbens in patients with knee osteoarthritis[J]. Rehabil Med, 2020, 30(1): 40-45. DOI: 10.3724/SP.J.1329.2020.01009.
[49]
COTTAM W J, IWABUCHI S J, DRABEK M M, et al. Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis[J]. Pain, 2018, 159(5): 929-938. DOI: 10.1097/j.pain.0000000000001209.
[50]
WANG X, WANG K, BAO Z Y, et al. The correlation between altered brain fMRI and pain perception before and after operation in patients with knee osteoarthritis[J]. Int J Med Radiol, 2019, 42(3): 255-259, 284. DOI: 10.19300/j.2019.L6400.
[51]
HE M X, PING L L, XU X F. Research Progress of Complex brain Networks based on Graph Theory in Mental Diseases[J]. J Kunming Med Univ, 2019, 40(5): 129-134. DOI: 10.3969/j.issn.1003-4706.2019.05.025.
[52]
RIVERA-ROMANO L S, JUÁREZ-CANO G, HERNÁNDEZ-LEMUS E, et al. Structure of communities in semantic networks of biomedical research on disparities in health and sexism[J]. Biomedica, 2020, 40(4): 702-721. DOI: 10.7705/biomedica.5182.
[53]
XIE H W, LUO T Y, CHEN R X, et al. Study of default-mode network in fMRI in patients with chronic pain[J]. Life Sci Res, 2011, 15(6): 502-506. DOI: 10.16605/j.cnki.1007-7847.2011.06.005.
[54]
BALIKI M N, MANSOUR A R, BARIA A T, et al. Functional reorganization of the default mode network across chronic pain conditions[J/OL]. PLoS One, 2014, 9(9): e106133 [2022-06-23]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106133. DOI: 10.1371/journal.pone.0106133.
[55]
HIRAMATSU T, NAKANISHI K, YOSHIMURA S, et al. The dorsolateral prefrontal network is involved in pain perception in knee osteoarthritis patients[J]. Neurosci Lett, 2014, 581: 109-114. DOI: 10.1016/j.neulet.2014.08.027.
[56]
DAVIS K D, FLOR H, GREELY H T, et al. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations[J]. Nat Rev Neurol, 2017, 13(10): 624-638. DOI: 10.1038/nrneurol.2017.122.

PREV Current status and research progress of MRI diagnosis in deep infiltrating endometriosis
NEXT Chinese expert consensus of scanning protocol and clinical application of magnetic resonance cholangiopancreatography
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn