Share:
Share this content in WeChat
X
Clinlcal Guidelines & Expert Consensu
Chinese expert consensus of scanning protocol and clinical application of magnetic resonance cholangiopancreatography
Abdominal Group of Chinese Society of Radiology Chinese Medical Association

Cite this article as: Abdominal Group of Chinese Society of Radiology Chinese Medical Association. Chinese expert consensus of scanning protocol and clinical application of magnetic resonance cholangiopancreatography[J]. Chin J Magn Reson Imaging, 2023, 14(4): 1-5, 21. DOI:10.12015/issn.1674-8034.2023.04.001.


[Abstract] MR cholangiopancreatography (MRCP) is an important tool for the diagnosis of pancreaticobiliary diseases. Standardizing the MRCP scanning protocol, optimizing the MRCP examination process and summarizing the key points in image analysis will further improve its clinical application in pancreaticobiliary diseases thus for better improve patients' service. The Abdominal Group of Chinese Society of Radiology Chinese Medical Association together with experts related to this issue draft an expert consensus on MRCP scanning protocol and clinical application based on the latest MRI technology and experts' experience and opinion.
[Keywords] magnetic resonance imaging;cholangiopancreatography;scanning protocol;clinical application;expert consensus

Abdominal Group of Chinese Society of Radiology Chinese Medical Association  

Corresponding author: Zhao XM, E-mail: xinmingzh@sina.com Chen M, E-mail: cjr.chenmin@vip.163.com Jin ZY, E-mail: jin_zhengyu@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation for Young Scientists of China (No. 82101996); Beijing Municipal Key Clinical Specialty Excellence Program.
Received  2023-03-01
Accepted  2023-04-11
DOI: 10.12015/issn.1674-8034.2023.04.001
Cite this article as: Abdominal Group of Chinese Society of Radiology Chinese Medical Association. Chinese expert consensus of scanning protocol and clinical application of magnetic resonance cholangiopancreatography[J]. Chin J Magn Reson Imaging, 2023, 14(4): 1-5, 21. DOI:10.12015/issn.1674-8034.2023.04.001.

[1]
BARISH M A, YUCEL E K, FERRUCCI J T. Magnetic resonance cholangiopancreatography[J]. N Engl J Med, 1999, 341(4): 258-264. DOI: 10.1056/NEJM199907223410407.
[2]
VIDAL B P C, LAHAN-MARTINS D, PENACHIM T J, et al. MR cholangiopancreatography: what every radiology resident must know[J]. Radiographics, 2020, 40(5): 1263-1264. DOI: 10.1148/rg.2020200030.
[3]
HARRINGTON K A, SHUKLA-DAVE A, PAUDYAL R, et al. MRI of the pancreas[J]. J Magn Reson Imaging, 2021, 53(2): 347-359. DOI: 10.1002/jmri.27148.
[4]
GRIFFIN N, YU D, ALEXANDER GRANT L. Magnetic resonance cholangiopancreatography: pearls, pitfalls, and pathology[J]. Semin Ultrasound CT MR, 2013, 34(1): 32-43. DOI: 10.1053/j.sult.2012.11.003.
[5]
ITANI M, LALWANI N, ANDERSON M A, et al. Magnetic resonance cholangiopancreatography: pitfalls in interpretation[J]. Abdom Radiol (NY), 2023, 48(1): 91-105. DOI: 10.1007/s00261-021-03323-1.
[6]
ZHU L, SUN Z Y, XUE H D, et al. Patient-adapted respiratory training: effect on navigator-triggered 3D MRCP in painful pancreatobiliary disorders[J]. Magn Reson Imaging, 2018, 45: 43-50. DOI: 10.1016/j.mri.2017.09.014.
[7]
SUN Z Y. Application of 3D MRCP acceleration technology in diseases of pancreaticobiliary system and exploration of image quality improvement strategy[D]. Beijing: Peking Union Medical College, 2019.
[8]
FRISCH A, WALTER T C, HAMM B, et al. Efficacy of oral contrast agents for upper gastrointestinal signal suppression in MRCP: a systematic review of the literature[J]. Acta Radiol Open, 2017, 6(9): 2058460117727315 [2023-03-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582660/. DOI: 10.1177/2058460117727315.
[9]
RENZULLI M, BISELLI M, FABBRI E, et al. What is the best fruit juice to use as a negative oral contrast agent in magnetic resonance cholangiopancreatography?[J]. Clin Radiol, 2019, 74(3): 220-227. DOI: 10.1016/j.crad.2018.11.005.
[10]
TAJIMA N, UTANO K, KIJIMA S, et al. Intraductal papillary mucinous neoplasm penetrating to the stomach, duodenum, and jejunum demonstrated on MR cholangiopancreatography with an oral negative contrast agent[J]. J Magn Reson Imaging, 2013, 38(1): 206-209. DOI: 10.1002/jmri.23915.
[11]
RIORDAN R D, KHONSARI M, JEFFRIES J, et al. Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography: a preliminary evaluation[J]. Br J Radiol, 2004, 77(924): 991-999. DOI: 10.1259/bjr/36674326.
[12]
PAPANIKOLAOU N, KARANTANAS A, MARIS T, et al. MR cholangiopancreatography before and after oral blueberry juice administration[J]. J Comput Assist Tomogr, 2000, 24(2): 229-234. DOI: 10.1097/00004728-200003000-00008.
[13]
GHANAATI H, ROKNI-YAZDI H, JALALI A H, et al. Improvement of MR cholangiopancreatography (MRCP) images after black tea consumption[J]. Eur Radiol, 2011, 21(12): 2551-2557. DOI: 10.1007/s00330-011-2217-0.
[14]
XU Y C, XU Z D, ZHANG J H, et al. The application of three-dimensional breath-hold gradient and spin-echo sequence in the MR cholangiopancreatography[J]. Chin J Radiol, 2021, 55(1): 64-69. DOI: 10.3760/cma.j.cn112149-20200215-00160.
[15]
ZHU L, WU X, SUN Z Y, et al. Compressed-sensing accelerated 3-dimensional magnetic resonance cholangiopancreatography: application in suspected pancreatic diseases[J]. Invest Radiol, 2018, 53(3): 150-157. DOI: 10.1097/RLI.0000000000000421.
[16]
YOON J H, LEE S M, KANG H J, et al. Clinical feasibility of 3-dimensional magnetic resonance cholangiopancreatography using compressed sensing: comparison of image quality and diagnostic performance[J]. Invest Radiol, 2017, 52(10): 612-619. DOI: 10.1097/RLI.0000000000000380.
[17]
CHANDARANA H, DOSHI A M, SHANBHOGUE A, et al. Three-dimensional MR cholangiopancreatography in a breath hold with sparsity-based reconstruction of highly undersampled data[J]. Radiology, 2016, 280(2): 585-594. DOI: 10.1148/radiol.2016151935.
[18]
ZHENG E S, XUE Y J, SUN B, et al. Feasibility of single breath holding 3D-SPACE MR cholangiopancreatography: a preliminary study[J]. Chin J Radiol, 2020, 54(8): 799-803. DOI: 10.3760/cma.j.cn112149-20190921-00438.
[19]
LI X, ZHU Y H, JIN D Y, et al. Usefulness of breath hold 3D-SPACE sequence in MR cholangiopancreatography: comparison with breath triggered sequence[J]. J Pract Radiol, 2021, 37(6): 1013-1016. DOI: 10.3969/j.issn.1002-1671.2021.06.035.
[20]
HE M, XU J, SUN Z Y, et al. Comparison and evaluation of the efficacy of compressed SENSE (CS) and gradient- and spin-echo (GRASE) in breath-hold (BH) magnetic resonance cholangiopancreatography (MRCP)[J]. J Magn Reson Imaging, 2020, 51(3): 824-832. DOI: 10.1002/jmri.26863.
[21]
ONISHI H, KIM T, HORI M, et al. MR cholangiopancreatography at 3.0 T: intraindividual comparative study with MR cholangiopancreatography at 1.5 T for clinical patients[J]. Invest Radiol, 2009, 44(9): 559-565. DOI: 10.1097/RLI.0b013e3181b4c0ae.
[22]
BLAISE H, REMEN T, AMBARKI K, et al. Comparison of respiratory-triggered 3D MR cholangiopancreatography and breath-hold compressed-sensing 3D MR cholangiopancreatography at 1.5 T and 3 T and impact of individual factors on image quality[J/OL]. Eur J Radiol, 2021, 142: 109873 [2023-03-10]. https://pubmed.ncbi.nlm.nih.gov/34371309/. DOI: 10.1016/j.ejrad.2021.109873.
[23]
TARON J, WEISS J, NOTOHAMIPRODJO M, et al. Acceleration of magnetic resonance cholangiopancreatography using compressed sensing at 1.5 and 3 T: a clinical feasibility study[J]. Invest Radiol, 2018, 53(11): 681-688. DOI: 10.1097/RLI.0000000000000489.
[24]
MORITA S, SAITO N, SUZUKI K, et al. Biliary anatomy on 3D MRCP: comparison of volume-rendering and maximum-intensity-projection algorithms[J]. J Magn Reson Imaging, 2009, 29(3): 601-606. DOI: 10.1002/jmri.21398.
[25]
ZHANG J B, ISRAEL G M, HECHT E M, et al. Isotropic 3D T2-weighted MR cholangiopancreatography with parallel imaging: feasibility study[J]. AJR Am J Roentgenol, 2006, 187(6): 1564-1570. DOI: 10.2214/AJR.05.1032.
[26]
CHOI S H, KIM K W, KWON H J, et al. Clinical usefulness of gadoxetic acid-enhanced MRI for evaluating biliary anatomy in living donor liver transplantation[J]. Eur Radiol, 2019, 29(12): 6508-6518. DOI: 10.1007/s00330-019-06292-8.
[27]
WELLE C L, MILLER F H, YEH B M. Advances in MR imaging of the biliary tract[J]. Magn Reson Imaging Clin N Am, 2020, 28(3): 341-352. DOI: 10.1016/j.mric.2020.03.002.
[28]
KINNER S, SCHUBERT T B, SAID A, et al. Added value of gadoxetic acid-enhanced T1-weighted magnetic resonance cholangiography for the diagnosis of post-transplant biliary complications[J]. Eur Radiol, 2017, 27(10): 4415-4425. DOI: 10.1007/s00330-017-4797-9.
[29]
REDDY S, LOPES VENDRAMI C, MITTAL P, et al. MRI evaluation of bile duct injuries and other post-cholecystectomy complications[J]. Abdom Radiol (NY), 2021, 46(7): 3086-3104. DOI: 10.1007/s00261-020-02947-z.
[30]
SWENSSON J, ZAHEER A, CONWELL D, et al. Secretin-enhanced MRCP: how and why-AJR expert panel narrative review[J]. AJR Am J Roentgenol, 2021, 216(5): 1139-1149. DOI: 10.2214/AJR.20.24857.
[31]
MENSEL B, MESSNER P, MAYERLE J, et al. Secretin-stimulated MRCP in volunteers: assessment of safety, duct visualization, and pancreatic exocrine function[J]. AJR Am J Roentgenol, 2014, 202(1): 102-108. DOI: 10.2214/AJR.12.10271.
[32]
WANG J H, ZHANG J, SUN G F, et al. Secretin-stimulated MR cholangio-pancreatography and pathological correlative study in a swine obstructive chronic pancreatitis model[J]. Chin J Radiol, 2015, 49(9): 698-703. DOI: 10.3760/cma.j.issn.1005-1201.2015.09.013.
[33]
ITO K, TORIGOE T, TAMADA T, et al. The secretory flow of pancreatic juice in the main pancreatic duct: visualization by means of MRCP with spatially selective inversion-recovery pulse[J]. Radiology, 2011, 261(2): 582-586. DOI: 10.1148/radiol.11110162.
[34]
YASOKAWA K, ITO K, TAMADA T, et al. Postprandial changes in secretory flow of pancreatic juice in the main pancreatic duct: evaluation with cine-dynamic MRCP with a spatially selective inversion-recovery (IR) pulse[J]. Eur Radiol, 2016, 26(12): 4339-4344. DOI: 10.1007/s00330-016-4287-5.
[35]
TORIGOE T, ITO K, YAMAMOTO A, et al. Age-related change of the secretory flow of pancreatic juice in the main pancreatic duct: evaluation with cine-dynamic MRCP using spatially selective inversion recovery pulse[J]. AJR Am J Roentgenol, 2014, 202(5): 1022-1026. DOI: 10.2214/AJR.13.10852.

PREV Research progress on brain function remodeling mechanism of knee osteoarthritis pain based on resting-state functional magnetic resonance imaging technology
NEXT Dynamic changes of spontaneous neural activity in the brain of patients with minimal hepatic encephalopathy: A preliminary study of resting-state functional magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn