Share:
Share this content in WeChat
X
Clinical Article
Clinical application of DWI combined with DKI and SWI in the diagnosis of parotid tumors
YAN Xiaolan  YE Deqiu  CHEN Jieyun  LIU Jiyang  LIAN Tao 

Cite this article as: YAN X L, YE D Q, CHEN J Y, et al. Clinical application of DWI combined with DKI and SWI in the diagnosis of parotid tumors[J]. Chin J Magn Reson Imaging, 2023, 14(4): 41-45, 67. DOI:10.12015/issn.1674-8034.2023.04.008.


[Abstract] Objective To investigate the clinical application value of diffusion weighted imaging (DWI) combined with diffusion kurtosis imaging (DKI) and susceptibility weighted imaging (SWI) in the diagnosis and differential diagnosis of benign and malignant tumors of parotid gland.Materials and Methods A prospective study was conducted on 70 patients with parotid tumors confirmed by postoperative pathology in our hospital, including 48 benign tumors and 22 malignant tumors. All patients underwent conventional MRI examination, DWI, DKI, SWI sequence scan before surgery. Apparent diffusion coefficient (ADC) value, mean kurtosis (MK) value, radial kurtosis (Kr) value, axial kurtosis (Ka) value, venous distribution around tumor, susceptibility signal intensity (ITSS) grade, maximum venous diameter Dv-max and other technical indicators of functional imaging were analyzed by workstation. Receiver operating characteristic (ROC) curves were drawn for statistically significant results to analyze their diagnostic efficiency and obtain diagnostic thresholds.Results The ADC value of benign parotid tumor was higher than that of malignant tumor, and that of malignant tumor and Warthin tumor was lower than that of pleomorphic adenoma. The differences among all groups were statistically significant, with good diagnostic efficacy. The ADC value of Warthin tumor was close to that of malignant tumor, and there was no statistical significance between groups (P<0.05). The mean values of MK, Kr and Ka in malignant parotid tumors were higher than those in benign tumors (P<0.05), with statistical significance among all groups and good sensitivity and specificity. The venous distribution of benign parotid tumors was mainly peripheral, and that of malignant tumors was mainly central. The ITSS grade of benign tumors was mainly grade 1, and that of malignant tumors was mainly grade 2-3. The Dv-max of malignant tumors was higher than that of benign tumors, and the difference between each group was statistically significant (P<0.05). In the joint diagnostic model of DKI, DWI and SWI, MK>1.0400, Kr>1.1500, Ka>0.8670 and ADC<1.140×10-3 mm2/s, the maximum vein diameter (Dv-max)>1.500 mm, the area under the curve is 0.995, the sensitivity is 93.9%, and the specificity is 100.0%.Conclusions DWI, DKI, SWI combined diagnosis model can improve the differential diagnosis efficiency of benign and malignant parotid tumors.
[Keywords] parotid tumor;magnetic resonance imaging;diffusion weighted imaging;diffusion kurtosis imaging;susceptibility weighted imaging;diagnostic model;differential diagnosis

YAN Xiaolan   YE Deqiu   CHEN Jieyun*   LIU Jiyang   LIAN Tao  

Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China

Corresponding author: Chen JY, E-mail: 2207934327@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Science & Technology Program of Quanzhou City (No. 2019N029S).
Received  2022-11-02
Accepted  2023-04-12
DOI: 10.12015/issn.1674-8034.2023.04.008
Cite this article as: YAN X L, YE D Q, CHEN J Y, et al. Clinical application of DWI combined with DKI and SWI in the diagnosis of parotid tumors[J]. Chin J Magn Reson Imaging, 2023, 14(4): 41-45, 67. DOI:10.12015/issn.1674-8034.2023.04.008.

[1]
INAKA Y, KAWATA R, HAGINOMORI S I, et al. Symptoms and signs of parotid tumors and their value for diagnosis and prognosis: a 20-year review at a single institution[J]. Int J Clin Oncol, 2021, 26(7): 1170-1178. DOI: 10.1007/s10147-021-01901-3.
[2]
SANTANA B W, SILVA L P, SERPA M S, et al. Incidence and profile of benign epithelial tumors of salivary glands from a single center in Northeast of Brazil[J/OL]. Med Oral Patol Oral Cir Bucal, 2021, 26(1): e108-e113 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/33247571/. DOI: 10.4317/medoral.24056.
[3]
MOORI P L, RAHMAN S. Endoscopic versus conventional parotid gland excision: a systematic review and meta-analysis[J]. Br J Oral Maxillofac Surg, 2021, 59(3): 272-280. DOI: 10.1016/j.bjoms.2020.08.103.
[4]
MASHRAH M A, AL-SHARANI H M, AL-AROOMIMA, et al. Surgical interventions for management of benign parotid tumors: Systematic review and network meta-analysis[J]. Head Neck, 2021, 43(11): 3631-3645. DOI: 10.1002/hed.26813.
[5]
PARK K S, KIM J H, LEE D H, et al. Carcinoma ex pleomorphic adenoma of the parotid gland[J/OL]. Am J Otolaryngol. 2022, 43(2): 103389 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/35149345/. DOI: 10.1016/j.amjoto.2022.103389.
[6]
Chiesa-Estomba C M, Larruscain-Sarasola E, Lechien J R, et al. Facial nerve monitoring during parotid gland surgery: a systematic review and meta-analysis[J]. Eur Arch Otorhinolaryngol, 2021, 278(4): 933-943. DOI: 10.1007/s00405-020-06188-0.
[7]
SEYHUN N, DOĞAN U, ÇALıŞ Z A B, et al. The role of fine needle aspiration biopsy in deep lobe parotid tumors: Comparison of preoperative cytology and postoperative histopathologic results[J/OL]. Am J Otolaryngol, 2021, 42(1): 102590 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/33045535/. DOI: 10.1016/j.amjoto.2020.102590.
[8]
MCGEARY R, RHYNER P A, DESAI A B, et al. Navigating the Parotid Glands: Anatomy, Imaging Work-up and Next Steps[J]. Clin Neuroradiol, 2022, 32(3): 615-623. DOI: 10.1007/s00062-021-01108-z.
[9]
JUAN C J, HUANG T Y, LIU Y J, et al. Improving diagnosing performance for malignant parotid gland tumors using machine learning with multifeatures based on diffusion-weighted magnetic resonance imaging[J/OL]. NMR Biomed, 2022, 35(3): e4642 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/34738671/. DOI: 10.1002/nbm.4642.
[10]
HIRAHARA N, MURAOKA H, ITO K, et al. Quantitative assessment of the mandibular condyle in patients with diabetes mellitus using diffusion-weighted magnetic resonance imaging[J]. Oral Radiol, 2022, 38(4): 534-539. DOI: 10.1007/s11282-021-00585-9.
[11]
ZHANG D, GENG X, SUO S, et al. The predictive value of DKI in breast cancer: Does tumour subtype affect pathological response evaluations?[J]. Magn Reson Imaging, 2022, 85: 28-34. DOI: 10.1016/j.mri.2021.10.013.
[12]
HU S, PENG Y, WANG Q, et al. T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors[J]. AbdomRadiol (NY), 2022, 47(2): 517-529. DOI: 10.1007/s00261-021-03369-1.
[13]
LI Y, KIM M M, WAHL D R, et al. Survival Prediction Analysis in Glioblastoma With Diffusion Kurtosis Imaging[J/OL]. Front Oncol, 2021, 11: 690036 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/34336676/. DOI: 10.3389/fonc.2021.690036.
[14]
WANG Y R, LI Z S, HUANG W, et al. The Value of Susceptibility-Weighted Imaging (SWI) in Evaluating the Ischemic Penumbra of Patients with Acute Cerebral Ischemic Stroke[J]. Neuropsychiatr Dis Treat, 2021, 17: 1745-1750. DOI: 10.2147/NDT.S301870.
[15]
DEPPE D, HERMANN K G, PROFT F, et al. CT-like images of the sacroiliac joint generated from MRI using susceptibility-weighted imaging (SWI) in patients with axial spondyloarthritis[J/OL]. RMD Open, 2021, 7(2): e001656 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/34049998/. DOI: 10.1136/rmdopen-2021-001656.
[16]
HAGEMAN G, HOF J, NIHOM J. Susceptibility-Weighted MRI and Microbleeds in Mild Traumatic Brain Injury: Prediction of Posttraumatic Complaints?[J]. Eur Neurol, 2022, 17: 1-9. DOI: 10.1159/000521389.
[17]
XU Z, CHEN M, ZHENG S, et al. Differential diagnosis of parotid gland tumours: Application of SWI combined with DWI and DCE-MRI[J/OL]. Eur J Radiol, 2022, 146: 110094 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/34906852/. DOI: 10.1016/j.ejrad.2021.110094.
[18]
GAUDINO S, MARZIALI G, PEZZULLO G, et al. Role of susceptibility-weighted imaging and intratumoral susceptibility signals in grading and differentiating pediatric brain tumors at 1.5 T: a preliminary study[J]. Neuroradiology, 2020, 62(6): 705-713. DOI: 10.1007/s00234-020-02386-z.
[19]
LI X R, LAI Y L, WEN H Y, et al. Relationship between multimodal MRI features and benign and malignant diagnosis of parotid tumor and comparison of pathological results[J]. J Chin Clin Med Imaging, 2021, 32(11): 777-780. DOI: 10.12117/jccmi.2021.11.004.
[20]
ZHANG Q, PENG Y, LIU W, et al. Radiomics Based on Multimodal MRI for the Differential Diagnosis of Benign and Malignant Breast Lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607. DOI: 10.1002/jmri.27098.
[21]
KARAMAN C Z, TANYERI A, ÖZGÜR R, et al. Parotid gland tumors: comparison of conventional and diffusion-weighted MRI findings with histopathological results[J/OL]. Dentomaxillofac Radiol, 2021, 50(4): 20200391 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/33237812/. DOI: 10.1259/dmfr.20200391.
[22]
HAN L, WU X P. Research progress of MRI technology in the diagnosis of parotid tumor[J]. Chin J Magn Reson Imaging, 2022, 13(2): 133-136. DOI: 10.12015/issn.1674-8034.2022.02.033.
[23]
CHEN J, LIU S, TANG Y, et al. Performance of diffusion-weighted imaging for the diagnosis of parotid gland malignancies: A meta-analysis[J/OL]. Eur J Radiol, 2021, 134: 109444 [2022-11-01] . https://pubmed.ncbi.nlm.nih.gov/33310422/. DOI: 10.1016/j.ejrad.2020.109444.
[24]
ORHANSOYLEMEZ U P, ATALAY B. Differentiation of Benign and Malignant Parotid Gland Tumors with MRI and Diffusion Weighted Imaging[J]. Medeni Med J, 2021, 36(2): 138-145. DOI: 10.5222/MMJ.2021.84666.
[25]
JIA C H, WANG S Y, LI Q, et al. Conventional, diffusion, and dynamic contrast-enhanced MRI findings for differentiating metaplastic Warthin's tumor of the parotid gland[J/OL]. Sci Prog, 2021, 104(2): 368504211018583 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/34003684/. DOI: 10.1177/00368504211018583.
[26]
Yu S, Zhang Z, Bao Q, et al. Diffusion kurtosis imaging in the differential diagnosis of parotid gland disease and parotid adenolymphoma: preliminary results[J/OL]. Dentomaxillofac Radiol, 2018, 47(6): 20170388 [2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/29676939/. DOI: 10.1259/dmfr.20170388.
[27]
CHENG J, SHAO S, CHEN W, et al. Application of Diffusion Kurtosis Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Differentiating Benign and Malignant Head and Neck Lesions[J]. J Magn Reson Imaging, 2022, 55(2): 414-423. DOI: 10.1002/jmri.27885.
[28]
YU S, BAO Q, SU J W. Value of MR diffution kurtosis imaging in the differential diagnosis of parotid tumor[J]. Radiol Pract, 2017, 32(8): 821-826. DOI: 10.13609/j.cnki.1000-0313.2017.08.008.
[29]
ZHANG W, ZUO Z, HUANG X, et al. Value of Diffusion-Weighted Imaging Combined with Susceptibility-Weighted Imaging in Differentiating Benign from Malignant Parotid Gland Lesions[J]. Med Sci Monit, 2018, 24: 4610-4616. DOI: 10.12659/MSM.911185.
[30]
ZHAI J N, ZUO Z C, WANG P, et al. The Diagnostic Value of Conventional MRI Combined with SWI in the Differential Diagnosis of Benign Parotid Gland Lesions[J]. J Clin Radiol, 2018, 37(11): 1810-1814. DOI: 10.13437/j.cnki.jcr.2018.11.012.
[31]
ELMOKADEM A H, ABDEL KHALEK A M, ABDEL WAHAB R M, et al. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging for Differentiation Between Parotid Neoplasms[J]. Can Assoc Radiol J, 2019, 70(3): 264-272. DOI: 10.1016/j.carj.2018.10.010.
[32]
COUDERT H, MIRAFZAL S, DISSARD A, et al. Multiparametric magnetic resonance imaging of parotid tumors: A systematic review[J]. DiagnInterv Imaging, 2021, 102(3): 121-130. DOI: 10.1016/j.diii.2020.08.002.
[33]
HU T, FANG X W, LIU Q, et al. Multiparameters of DWI and DCE-MRI in differentiation between parotid Warthin tumor and pleomorphic adenoma[J]. Chin J Magn Reson Imaging, 2021, 12(7): 55-59. DOI: 10.12015/issn.1674-8034.2021.07.011.
[34]
DAGA R, KUMAR J, PRADHAN G, et al. Differentiation of Benign From Malignant Sinonasal Masses Using Diffusion Weighted Imaging and Dynamic Contrast Enhanced Magnetic Resonance Imaging[J]. Am J Rhinol Allergy, 2022, 36(2): 207-215. DOI: 10.1177/19458924211040602.
[35]
YAO W, LIU C, WANG N, et al. An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy[J]. J Colloid Interface Sci, 2021, 603: 783-798. DOI: 10.1016/j.jcis.2021.06.151.
[36]
YUAN X, WANG S, SHI W, et al. Dual Plasma Sampling Method to Determine the Hepatic and Renal Clearance of the 2 Diastereoisomers of Gd-EOB-DTPA[J]. Invest Radiol, 2020, 55(3): 168-173. DOI: 10.1097/RLI.0000000000000622.

PREV The diagnostic value of 3.0 T DCE-MRI combined with DWI in differentiating pleomorphic adenoma and basal cell adenoma of salivary gland
NEXT Comprehensive analysis of carotid body tumor complicated with carotid artery by high resolution magnetic resonance vascular wall imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn