Share:
Share this content in WeChat
X
Review
Research progress of multimodal MRI in evaluating the rapid antidepressant effect of ketamine
LI Hao  JIANG Zhongde  LI Xianglin 

Cite this article as: LI H, JIANG Z D, LI X L. Research progress of multimodal MRI in evaluating the rapid antidepressant effect of ketamine[J]. Chin J Magn Reson Imaging, 2023, 14(4): 115-119. DOI:10.12015/issn.1674-8034.2023.04.020.


[Abstract] Depression is a multifactorial mental disorder characterized by high morbidity and suicide risk. Ketamine, as a fast-acting, stable and rapid antidepressant drug with few side effects, is gradually being pushed into the clinic. MRI, as a non-invasive examination technique, can non-invasively observe the efficacy of ketamine. This article reviews the research progress of multimodal MRI in evaluating the rapid antidepressant effect of ketamine, and provides objective evidence for clinical judgment of the rapid antidepressant effect of ketamine.
[Keywords] depression;magnetic resonance imaging;ketamine;brain structure;brain function

LI Hao   JIANG Zhongde   LI Xianglin*  

School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Corresponding author: Li XL, E-mail: xlli@bzmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 62176181); Key R&D Plan of Shandong Province (No. 2018YFJH0501).
Received  2022-12-12
Accepted  2023-04-06
DOI: 10.12015/issn.1674-8034.2023.04.020
Cite this article as: LI H, JIANG Z D, LI X L. Research progress of multimodal MRI in evaluating the rapid antidepressant effect of ketamine[J]. Chin J Magn Reson Imaging, 2023, 14(4): 115-119. DOI:10.12015/issn.1674-8034.2023.04.020.

[1]
MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/S0140-6736(18)31948-2.
[2]
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/S2215-0366(18)30511-X.
[3]
WANG Y T, WANG X L, FENG S T, et al. Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression[J/OL]. Pharmacol Res, 2021, 171: 105761 [2023-03-27]. https://doi.org/10.1016/j.phrs.2021.105761. DOI: 10.1016/j.phrs.2021.105761.
[4]
MCGRATH T, BASKERVILLE R, ROGERO M, et al. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases[J/OL]. Nutrients, 2022, 14(5): 917 [2023-03-27]. https://doi.org/10.3390/nu14050917. DOI: 10.3390/nu14050917.
[5]
DUMAN R S, SANACORA G, KRYSTAL J H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments[J]. Neuron, 2019, 102(1): 75-90. DOI: 10.1016/j.neuron.2019.03.013.
[6]
BORBELY E, SIMON M, FUCHS E, et al. Novel drug developmental strategies for treatment-resistant depression[J]. Br J Pharmacol, 2022, 179(6): 1146-1186. DOI: 10.1111/bph.15753.
[7]
SAMOJEDNY S, CZECHOWSKA E, PANCZYSZYN-TRZEWIK P, et al. Postsynaptic Proteins at Excitatory Synapses in the Brain-Relationship with Depressive Disorders[J/OL]. Int J Mol Sci, 2022, 23(19): 11423 [2023-03-27]. https://doi.org/10.3390/ijms231911423. DOI: 10.3390/ijms231911423.
[8]
KHOODORUTH M A S, ESTUDILLO-GUERRA M A, PACHECO-BARRIOS K, et al. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization[J/OL]. Front Psychiatry, 2022, 13: 886918 [2023-03-27]. https://doi.org/10.3389/fpsyt.2022.886918. DOI: 10.3389/fpsyt.2022.886918.
[9]
LUO J Y, LIU F, LUO Y H, et al. Advances in traditional Chinese medicine and western medicine treatment of depression[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2019, 40(5): 84-87. DOI: 10.16254/j.cnki.53-1120/r.2019.05.033.
[10]
RIGGS L M, GOULD T D. Ketamine and the Future of Rapid-Acting Antidepressants[J]. Annu Rev Clin Psychol, 2021, 17: 207-231. DOI: 10.1146/annurev-clinpsy-072120-014126.
[11]
BERMAN R M, CAPPIELLO A, ANAND A, et al. Antidepressant effects of ketamine in depressed patients[J]. Biol Psychiatry, 2000, 47(4): 351-354. DOI: 10.1016/s0006-3223(99)00230-9.
[12]
POCHWAT B, KRUPA A J, SIWEK M, et al. New investigational agents for the treatment of major depressive disorder[J]. Expert Opin Investig Drugs, 2022, 31(10): 1053-1066. DOI: 10.1080/13543784.2022.2113376.
[13]
YANG C, KOBAYASHI S, NAKAO K, et al. AMPA Receptor Activation-Independent Antidepressant Actions of Ketamine Metabolite (S)-Norketamine[J]. Biol Psychiatry, 2018, 84(8): 591-600. DOI: 10.1016/j.biopsych.2018.05.007.
[14]
ALEKSANDROVA L R, PHILLIPS A G. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics[J]. Trends Pharmacol Sci, 2021, 42(11): 929-942. DOI: 10.1016/j.tips.2021.08.003.
[15]
HESS E M, RIGGS L M, MICHAELIDES M, et al. Mechanisms of ketamine and its metabolites as antidepressants[J/OL]. Biochem Pharmacol, 2022, 197: 114892 [2023-03-27]. https://doi.org/10.1016/j.bcp.2021.114892. DOI: 10.1016/j.bcp.2021.114892.
[16]
HENTER I D, PARK L T, ZARATE C A JR. Novel Glutamatergic Modulators for the Treatment of Mood Disorders: Current Status[J]. CNS Drugs, 2021, 35(5): 527-543. DOI: 10.1007/s40263-021-00816-x.
[17]
AGO Y, TANABE W, HIGUCHI M, et al. (R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism[J]. Int J Neuropsychopharmacol, 2019, 22(10): 665-674. DOI: 10.1093/ijnp/pyz041.
[18]
SHELINE Y I, LISTON C, MCEWEN B S. Parsing the Hippocampus in Depression: Chronic Stress, Hippocampal Volume, and Major Depressive Disorder[J]. Biol Psychiatry, 2019, 85(6): 436-438. DOI: 10.1016/j.biopsych.2019.01.011.
[19]
RODDY D W, FARRELL C, DOOLIN K, et al. The Hippocampus in Depression: More Than the Sum of Its Parts? Advanced Hippocampal Substructure Segmentation in Depression[J]. Biol Psychiatry, 2019, 85(6): 487-497. DOI: 10.1016/j.biopsych.2018.08.021.
[20]
ARNONE D, MCINTOSH A M, EBMEIER K P, et al. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses[J]. Eur Neuropsychopharmacol, 2012, 22(1): 1-16. DOI: 10.1016/j.euroneuro.2011.05.003.
[21]
BROSCH K, STEIN F, SCHMITT S, et al. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders[J]. Mol Psychiatry, 2022, 27(10): 4234-4243. DOI: 10.1038/s41380-022-01687-4.
[22]
MOU J P, CHENG C, MEI L, et al. Gender difference of gray and white matter surface area in major depressive disorder[J]. Chin J Magn Reson Imaging, 2021, 12(1): 21-26, 37. DOI: 10.12015/issn.1674-8034.2021.01.005.
[23]
ZHOU Y L, WU F C, WANG C Y, et al. Relationship between hippocampal volume and inflammatory markers following six infusions of ketamine in major depressive disorder[J]. J Affect Disord, 2020, 276: 608-615. DOI: 10.1016/j.jad.2020.06.068.
[24]
ABDALLAH C G, JACKOWSKI A, SALAS R, et al. The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder[J]. Neuropsychopharmacology, 2017, 42(8): 1739-1746. DOI: 10.1038/npp.2017.49.
[25]
ABDALLAH C G, SALAS R, JACKOWSKI A, et al. Hippocampal volume and the rapid antidepressant effect of ketamine[J]. J Psychopharmacol, 2015, 29(5): 591-595. DOI: 10.1177/0269881114544776.
[26]
ZHOU Y L, WU F C, LIU W J, et al. Volumetric changes in subcortical structures following repeated ketamine treatment in patients with major depressive disorder: a longitudinal analysis[J/OL]. Transl Psychiatry, 2020, 10(1): 264 [2023-03-27]. https://doi.org/10.1038/s41398-020-00945-9. DOI: 10.1038/s41398-020-00945-9.
[27]
PODWALSKI P, SZCZYGIEL K, TYBURSKI E, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. DOI: 10.1007/s43440-020-00177-0.
[28]
LIAO Y, HUANG X, WU Q, et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD[J]. J Psychiatry Neurosci, 2013, 38(1): 49-56. DOI: 10.1503/jpn.110180.
[29]
CHEN G, GUO Y, ZHU H, et al. Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: A voxel-based meta-analysis of diffusion tensor imaging[J]. Prog Neuropsychopharmacol Biol Psychiatryry, 2017, 76: 179-187. DOI: 10.1016/j.pnpbp.2017.03.011.
[30]
JACOB Y, MORRIS L S, VERMA G, et al. Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder[J/OL]. Transl Psychiatry, 2022, 12(1): 209 [2023-03-27]. https://doi.org/10.1038/s41398-022-01976-0. DOI: 10.1038/s41398-022-01976-0.
[31]
SYDNOR V J, LYALL A E, CETIN-KARAYUMAK S, et al. Studying pre-treatment and ketamine-induced changes in white matter microstructure in the context of ketamine's antidepressant effects[J/OL]. Transl Psychiatry, 2020, 10(1): 432 [2023-03-27]. https://doi.org/10.1038/s41398-020-01122-8. DOI: 10.1038/s41398-020-01122-8.
[32]
VASAVADA M M, LEAVER A M, ESPINOZA R T, et al. Structural connectivity and response to ketamine therapy in major depression: A preliminary study[J]. J Affect Disord, 2016, 190: 836-841. DOI: 10.1016/j.jad.2015.11.018.
[33]
SCALABRINI A, VAI B, POLETTI S, et al. All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder[J]. Neuropsychopharmacology, 2020, 45(12): 2058-2069. DOI: 10.1038/s41386-020-0785-x.
[34]
SU R N, XIE S H, GAO Y. Observation on default mode network functional connectivity in first-episode mild to moderate depression patients with resting-state functional MRI[J]. Chin J Med Imaging Technol, 2022, 38(1): 38-43. DOI: 10.13929/j.issn.1003-3289.2022.01.009.
[35]
CHEN M H, CHANG W C, LIN W C, et al. Functional Dysconnectivity of Frontal Cortex to Striatum Predicts Ketamine Infusion Response in Treatment-Resistant Depression[J]. Int J Neuropsychopharmacol, 2020, 23(12): 791-798. DOI: 10.1093/ijnp/pyaa056.
[36]
GARTNER M, AUST S, BAJBOUJ M, et al. Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine[J]. Eur Neuropsychopharmacol, 2019, 29(4): 501-508. DOI: 10.1016/j.euroneuro.2019.02.008.
[37]
MKRTCHIAN A, EVANS J W, KRAUS C, et al. Ketamine modulates fronto-striatal circuitry in depressed and healthy individuals[J]. Mol Psychiatry, 2021, 26(7): 3292-3301. DOI: 10.1038/s41380-020-00878-1.
[38]
RIVAS-GRAJALES A M, SALAS R, ROBINSON M E, et al. Habenula Connectivity and Intravenous Ketamine in Treatment-Resistant Depression[J]. Int J Neuropsychopharmacol, 2021, 24(5): 383-391. DOI: 10.1093/ijnp/pyaa089.
[39]
WANG M, CHEN X, HU Y, et al. Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine[J]. Depress Anxiety, 2022, 39(5): 352-362. DOI: 10.1002/da.23238.
[40]
VASAVADA M M, LOUREIRO J, KUBICKI A, et al. Effects of Serial Ketamine Infusions on Corticolimbic Functional Connectivity in Major Depression[J]. Biol Psychiatryry Cogn Neurosci Neuroimaging, 2021, 6(7): 735-744. DOI: 10.1016/j.bpsc.2020.06.015.
[41]
DE DIEGO-ADELINO J, PORTELLA M J, GOMEZ-ANSON B, et al. Hippocampal abnormalities of glutamate/glutamine, N-acetylaspartate and choline in patients with depression are related to past illness burden[J]. J Psychiatry Neurosci, 2013, 38(2): 107-116. DOI: 10.1503/jpn.110185.
[42]
DRAGANOV M, VIVES-GILABERT Y, DE DIEGO-ADELINO J, et al. Glutamatergic and GABA-ergic abnormalities in First-episode depression. A 1-year follow-up 1H-MR spectroscopic study[J]. J Affect Disord, 2020, 266: 572-577. DOI: 10.1016/j.jad.2020.01.138.
[43]
BENSON K L, BOTTARY R, SCHOERNING L, et al. (1)H MRS Measurement of Cortical GABA and Glutamate in Primary Insomnia and Major Depressive Disorder: Relationship to Sleep Quality and Depression Severity[J]. J Affect Disord, 2020, 274: 624-631. DOI: 10.1016/j.jad.2020.05.026.
[44]
KANTROWITZ J T, DONG Z, MILAK M S, et al. Ventromedial prefrontal cortex/anterior cingulate cortex Glx, glutamate, and GABA levels in medication-free major depressive disorder[J/OL]. Transl Psychiatry, 2021, 11(1): 419 [2023-03-27]. https://doi.org/10.1038/s41398-021-01541-1. DOI: 10.1038/s41398-021-01541-1.
[45]
HE J, WANG D, BAN M, et al. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel (1)H magnetic resonance spectroscopy study[J]. J Affect Disord, 2022, 318: 263-271. DOI: 10.1016/j.jad.2022.09.001.
[46]
RITTER C, BUCHMANN A, MULLER S T, et al. Evaluation of Prefrontal gamma-Aminobutyric Acid and Glutamate Levels in Individuals With Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy[J]. JAMA Psychiatry, 2022, 79(12): 1209-1216. DOI: 10.1001/jamapsychiatry.2022.3384.
[47]
WANG K L, LIANG K, WANG L J, et al. The association of glutamate level in pregenual anterior cingulate, anhedonia, and emotion-behavior decoupling in patients with major depressive disorder[J/OL]. Asian J Psychiatr, 2022, 78: 103306 [2023-03-27]. https://doi.org/10.1016/j.ajp.2022.103306. DOI: 10.1016/j.ajp.2022.103306.
[48]
SUN J F. The effect of magnetic resonance spectrum in the auxiliary diagnosis of depression[J]. J Int Psychl, 2021, 48(3): 443-445. DOI: 10.13479/j.cnki.jip.2021.03.017.
[49]
MILAK M S, PROPER C J, MULHERN S T, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder[J]. Mol Psychiatry, 2016, 21(3): 320-327. DOI: 10.1038/mp.2015.83.
[50]
CHOWDHURY G M, ZHANG J, THOMAS M, et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects[J]. Mol Psychiatry, 2017, 22(1): 120-126. DOI: 10.1038/mp.2016.34.
[51]
MILAK M S, RASHID R, DONG Z, et al. Assessment of Relationship of Ketamine Dose With Magnetic Resonance Spectroscopy of Glx and GABA Responses in Adults With Major Depression: A Randomized Clinical Trial[J/OL]. JAMA Netw Open, 2020, 3(8): e2013211 [2023-03-27]. https://doi.org/10.1001/jamanetworkopen.2020.13211. DOI: 10.1001/jamanetworkopen.2020.13211.
[52]
EVANS J W, LALLY N, AN L, et al. 7T (1)H-MRS in major depressive disorder: a Ketamine Treatment Study[J]. Neuropsychopharmacology, 2018, 43(9): 1908-1914. DOI: 10.1038/s41386-018-0057-1.
[53]
CHEN F, GONG J, CHEN G, et al. Shared and specific characteristics of regional cerebral blood flow and functional connectivity in unmedicated bipolar and major depressive disorders[J]. J Affect Disord, 2022, 309: 77-84. DOI: 10.1016/j.jad.2022.04.099.
[54]
FAN D, HE C, LIU X, et al. Altered resting-state cerebral blood flow and functional connectivity mediate suicidal ideation in major depressive disorder[J]. J Cereb Blood Flow Metab, 2022, 42(9): 1603-1615. DOI: 10.1177/0271678x221090998.
[55]
XIONG Y, CHEN R S, WANG X Y, et al. Cerebral blood flow in adolescents with drug-naive, first-episode major depressive disorder: An arterial spin labeling study based on voxel-level whole-brain analysis[J/OL]. Front Neurosci, 2022, 16: 966087 [2023-03-27]. https://doi.org/10.3389/fnins.2022.966087. DOI: 10.3389/fnins.2022.966087.
[56]
WANG Y M, YANG Z Y. Aberrant pattern of cerebral blood flow in patients with major depressive disorder: A meta-analysis of arterial spin labelling studies[J/OL]. Psychiatry Res Neuroimaging, 2022, 321: 111458 [2023-03-27]. https://doi.org/10.1016/j.pscychresns.2022.111458. DOI: 10.1016/j.pscychresns.2022.111458.
[57]
OTA M, NODA T, SATO N, et al. Characteristic distributions of regional cerebral blood flow changes in major depressive disorder patients: a pseudo-continuous arterial spin labeling (pCASL) study[J]. J Affect Disord, 2014, 165: 59-63. DOI: 10.1016/j.jad.2014.04.032.
[58]
COOPER C M, CHIN FATT C R, LIU P, et al. Discovery and replication of cerebral blood flow differences in major depressive disorder[J]. Mol Psychiatry, 2020, 25(7): 1500-1510. DOI: 10.1038/s41380-019-0464-7.
[59]
RAMASUBBU R, BROWN E C, MARCIL L D, et al. Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements[J]. Psychiatry Clin Neurosci, 2019, 73(8): 486-493. DOI: 10.1111/pcn.12862.
[60]
SAHIB A K, LOUREIRO J R A, VASAVADA M M, et al. Single and repeated ketamine treatment induces perfusion changes in sensory and limbic networks in major depressive disorder[J]. Eur Neuropsychopharmacol, 2020, 33: 89-100. DOI: 10.1016/j.euroneuro.2020.01.017.
[61]
GÄRTNER M, DE ROVER M, VÁCLAVŮ L, et al. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder[J]. World J Biol Psychiatry, 2022, 23(8): 643-652. DOI: 10.1080/15622975.2021.2020900.
[62]
LUO X, REN Q, LUO M, et al. Glutamate Chemical Exchange Saturation Transfer Imaging and Functional Alterations of Hippocampus in Rat Depression Model: A Pilot Study[J]. J Magn Reson Imaging, 2021, 54(6): 1967-1976. DOI: 10.1002/jmri.27850.

PREV Paraganglioma in lumbar spinal canal: One case report
NEXT MRI advances of hippocampus in adolescents with depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn