Share:
Share this content in WeChat
X
Review
MRI advances of hippocampus in adolescents with depression
FENG Ruohan  ZHUO Lihua  LI Hongwei  OUYANG Xinqin  LONG Yongjun  HUANG Xiaoqi 

Cite this article as: FENG R H, ZHUO L H, LI H W, et al. MRI advances of hippocampus in adolescents with depression[J]. Chin J Magn Reson Imaging, 2023, 14(4): 120-125. DOI:10.12015/issn.1674-8034.2023.04.021.


[Abstract] Depression is the main cause of disability and death in adolescents. The pathogenesis of depression is still unclear. Researchers have suggested that the hippocampus plays a critical role in depression pathogenesis. Many neuroimaging studies related to depression have targeted the hippocampus in recent years,but few studies on adolescents have been conducted. The advanced MRI methods of hippocampus in adolescents with depression are reviewed in this article, such as structural and functional MRI, magnetic resonance spectroscopy, and findings of structure, function, and metabolism abnormalities associated with early adverse experiences and stressful events. This may be a neurobiological mechanism behind depression caused by these risk factors. More longitudinal and large-scale studies are needed to further verify these previous findings, and the relationship between risk factors such as the environment and brain changes needs to be further explored. This review summarized current status and shortcomings of research on the hippocampus of adolescents with depression in order to provide a reference direction for future research.
[Keywords] depression;adolescent;hippocampus;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;magnetic resonance spectroscopy;diffusion tensor imaging

FENG Ruohan1, 2   ZHUO Lihua1   LI Hongwei1   OUYANG Xinqin1   LONG Yongjun1   HUANG Xiaoqi2, 3*  

1 Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China

2 Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu 610041, China

3 Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu 610041, China

Corresponding author: Huang XQ, E-mail: julianahuang@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Sichuan Provincial Youth Grant (No. 2017JQ0001); Project of Sichuan Applied Psychology Research Center (No. CSXL-203005, CSXL-203006).
Received  2022-10-28
Accepted  2023-03-09
DOI: 10.12015/issn.1674-8034.2023.04.021
Cite this article as: FENG R H, ZHUO L H, LI H W, et al. MRI advances of hippocampus in adolescents with depression[J]. Chin J Magn Reson Imaging, 2023, 14(4): 120-125. DOI:10.12015/issn.1674-8034.2023.04.021.

[1]
MILLER L, CAMPO J V. Depression in Adolescents[J]. N Engl J Med, 2021, 385(5): 445-449. DOI: 10.1056/NEJMra2033475.
[2]
THAPAR A, EYRE O, PATEL V, et al. Depression in young people[J]. Lancet, 2022, 400(10352): 617-631. DOI: 10.1016/s0140-6736(22)01012-1.
[3]
KLAUFUS L, VERLINDEN E, VAN DER WAL M, et al. Adolescent anxiety and depression: burden of disease study in 53,894 secondary school pupils in the Netherlands[J/OL]. BMC Psychiatry, 2022, 22(1): 225 [2022-10-27]. https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-022-03868-5. DOI: 10.1186/s12888-022-03868-5.
[4]
ALAIE I, SSEGONJA R, PHILIPSON A, et al. Adolescent depression, early psychiatric comorbidities, and adulthood welfare burden: a 25-year longitudinal cohort study[J]. Soc Psychiatry Psychiatr Epidemiol, 2021, 56(11): 1993-2004. DOI: 10.1007/s00127-021-02056-2.
[5]
MACQUEEN G, FRODL T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research?[J]. Mol Psychiatry, 2011, 16(3): 252-264. DOI: 10.1038/mp.2010.80.
[6]
GULYAEVA N V. Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage[J]. Neurochem Res, 2019, 44(6): 1306-1322. DOI: 10.1007/s11064-018-2662-0.
[7]
XU W, YAO X, ZHAO F, et al. Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes[J/OL]. Neural Plast, 2020, 2020: 8861903 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/33293948/. DOI: 10.1155/2020/8861903.
[8]
PENG D, YAO Z. Neuroimaging Advance in Depressive Disorder[J]. Adv Exp Med Biol, 2019, 1180: 59-83. DOI: 10.1007/978-981-32-9271-0_3.
[9]
CASTANHEIRA L, SILVA C, CHENIAUX E, et al. Neuroimaging Correlates of Depression-Implications to Clinical Practice[J/OL]. Front Psychiatry, 2019, 10: 703 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/31632306/. DOI: 10.3389/fpsyt.2019.00703.
[10]
STRAUB J, BROWN R, MALEJKO K, et al. Adolescent depression and brain development: evidence from voxel-based morphometry[J]. J Psychiatry Neurosci, 2019, 44(4): 237-245. DOI: 10.1503/jpn.170233.
[11]
KIM J H, SUH S I, LEE H J, et al. Cortical and subcortical gray matter alterations in first-episode drug-naïve adolescents with major depressive disorder[J]. Neuroreport, 2019, 30(17): 1172-1178. DOI: 10.1097/wnr.0000000000001336.
[12]
SCHMAAL L, VELTMAN D J, VAN ERP T G, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group[J]. Mol Psychiatry, 2016, 21(6): 806-812. DOI: 10.1038/mp.2015.69.
[13]
SERAFINI G, POMPILI M, BORGWARDT S, et al. Brain changes in early-onset bipolar and unipolar depressive disorders: a systematic review in children and adolescents[J]. Eur Child Adolesc Psychiatry, 2014, 23(11): 1023-1041. DOI: 10.1007/s00787-014-0614-z.
[14]
MACMASTER F P, CARREY N, LANGEVIN L M, et al. Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression[J]. Brain Imaging Behav, 2014, 8(1): 119-127. DOI: 10.1007/s11682-013-9264-x.
[15]
ZAJKOWSKA Z, WALSH A, ZONCA V, et al. A systematic review of the association between biological markers and environmental stress risk factors for adolescent depression[J]. J Psychiatr Res, 2021, 138: 163-175. DOI: 10.1016/j.jpsychires.2021.04.003.
[16]
GONZÁLEZ-ACOSTA C A, ROJAS-CERÓN C A, BURITICÁ E. Functional Alterations and Cerebral Variations in Humans Exposed to Early Life Stress[J/OL]. Front Public Health, 2020, 8: 536188 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/33553081/. DOI: 10.3389/fpubh.2020.536188.
[17]
REDLICH R, OPEL N, BÜRGER C, et al. The Limbic System in Youth Depression: Brain Structural and Functional Alterations in Adolescent In-patients with Severe Depression[J]. Neuropsychopharmacology, 2018, 43(3): 546-554. DOI: 10.1038/npp.2017.246.
[18]
RAO U, CHEN L A, BIDESI A S, et al. Hippocampal changes associated with early-life adversity and vulnerability to depression[J]. Biol Psychiatry, 2010, 67(4): 357-364. DOI: 10.1016/j.biopsych.2009.10.017.
[19]
LITTLE K, OLSSON C A, YOUSSEF G J, et al. Linking the serotonin transporter gene, family environments, hippocampal volume and depression onset: A prospective imaging gene × environment analysis[J]. J Abnorm Psychol, 2015, 124(4): 834-849. DOI: 10.1037/abn0000101.
[20]
WEISSMAN D G, LAMBERT H K, RODMAN A M, et al. Reduced hippocampal and amygdala volume as a mechanism underlying stress sensitization to depression following childhood trauma[J]. Depress Anxiety, 2020, 37(9): 916-925. DOI: 10.1002/da.23062.
[21]
HENJE BLOM E, HAN L K, CONNOLLY C G, et al. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder[J/OL]. Transl Psychiatry, 2015, 5(11): e676 [2022-10-27]. https://www.nature.com/articles/tp2015172. DOI: 10.1038/tp.2015.172.
[22]
MACMASTER F P, KUSUMAKAR V. Hippocampal volume in early onset depression[J/OL]. BMC Med, 2004, 2: 2 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/14969587/. DOI: 10.1186/1741-7015-2-2.
[23]
JAWORSKA N, YÜCEL K, COURTRIGHT A, et al. Subgenual anterior cingulate cortex and hippocampal volumes in depressed youth: The role of comorbidity and age[J]. J Affect Disord, 2016, 190: 726-732. DOI: 10.1016/j.jad.2015.10.064.
[24]
HUBACHEK S, BOTDORF M, RIGGINS T, et al. Hippocampal subregion volume in high-risk offspring is associated with increases in depressive symptoms across the transition to adolescence[J]. J Affect Disord, 2021, 281: 358-366. DOI: 10.1016/j.jad.2020.12.017.
[25]
ZHANG Q, HONG S, CAO J, et al. Hippocampal Subfield Volumes in Major Depressive Disorder Adolescents with a History of Suicide Attempt[J/OL]. Biomed Res Int, 2021, 2021: 5524846 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/33954172/. DOI: 10.1155/2021/5524846.
[26]
WHITTLE S, LICHTER R, DENNISON M, et al. Structural brain development and depression onset during adolescence: a prospective longitudinal study[J]. Am J Psychiatry, 2014, 171(5): 564-571. DOI: 10.1176/appi.ajp.2013.13070920.
[27]
WHITTLE S, YAP M B, SHEEBER L, et al. Hippocampal volume and sensitivity to maternal aggressive behavior: a prospective study of adolescent depressive symptoms[J]. Dev Psychopathol, 2011, 23(1): 115-129. DOI: 10.1017/s0954579410000684.
[28]
SCHRIBER R A, ANBARI Z, ROBINS R W, et al. Hippocampal volume as an amplifier of the effect of social context on adolescent depression[J]. Clin Psychol Sci, 2017, 5(4): 632-649. DOI: 10.1177/2167702617699277.
[29]
PANNEKOEK J N, VAN DER WERFF S J, VAN DEN BULK B G, et al. Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents[J]. Neuroimage Clin, 2014, 4: 336-342. DOI: 10.1016/j.nicl.2014.01.007.
[30]
SCHMAAL L, YÜCEL M, ELLIS R, et al. Brain Structural Signatures of Adolescent Depressive Symptom Trajectories: A Longitudinal Magnetic Resonance Imaging Study[J/OL]. J Am Acad Child Adolesc Psychiatry, 2017, 56(7): 593-601.e9 [2022-10-27]. https://www.jaacap.org/article/S0890-8567(17)30210-1/fulltext. DOI: 10.1016/j.jaac.2017.05.008.
[31]
RAMEZANI M, JOHNSRUDE I, RASOULIAN A, et al. Temporal-lobe morphology differs between healthy adolescents and those with early-onset of depression[J]. Neuroimage Clin, 2014, 6: 145-155. DOI: 10.1016/j.nicl.2014.08.007.
[32]
JENKINS L M, CHIANG J J, VAUSE K, et al. Outward subcortical curvature associated with sub-clinical depression symptoms in adolescents[J/OL]. Neuroimage Clin, 2020, 25: 102187 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/31982681/. DOI: 10.1016/j.nicl.2020.102187.
[33]
HO T C, GUTMAN B, POZZI E, et al. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group[J]. Hum Brain Mapp, 2022, 43(1): 341-351. DOI: 10.1002/hbm.24988.
[34]
BELLEAU E L, TREADWAY M T, PIZZAGALLI D A. The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology[J]. Biol Psychiatry, 2019, 85(6): 443-453. DOI: 10.1016/j.biopsych.2018.09.031.
[35]
BANASR M, SANACORA G, ESTERLIS I. Macro- and Microscale Stress-Associated Alterations in Brain Structure: Translational Link With Depression[J]. Biol Psychiatry, 2021, 90(2): 118-127. DOI: 10.1016/j.biopsych.2021.04.004.
[36]
BARCH D M, HARMS M P, TILLMAN R, et al. Early childhood depression, emotion regulation, episodic memory, and hippocampal development[J]. J Abnorm Psychol, 2019, 128(1): 81-95. DOI: 10.1037/abn0000392.
[37]
RUTLAND J W, BROWN S, VERMA G, et al. Hippocampal subfield-specific connectivity findings in major depressive disorder: A 7 Tesla diffusion MRI study[J]. J Psychiatr Res, 2019, 111: 186-192. DOI: 10.1016/j.jpsychires.2019.02.008.
[38]
ZHOU Y, SI X, CHAO Y P, et al. Automated Classification of Mild Cognitive Impairment by Machine Learning With Hippocampus-Related White Matter Network[J/OL]. Front Aging Neurosci, 2022, 14: 866230 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/35774112/. DOI: 10.3389/fnagi.2022.866230.
[39]
GENG H, WU F, KONG L, et al. Disrupted Structural and Functional Connectivity in Prefrontal-Hippocampus Circuitry in First-Episode Medication-Naïve Adolescent Depression[J/OL]. PloS One, 2016, 11(2): e0148345 [2022-11-11]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148345. DOI: 10.1371/journal.pone.0148345.
[40]
HUANG H, GUNDAPUNEEDI T, RAO U. White matter disruptions in adolescents exposed to childhood maltreatment and vulnerability to psychopathology[J]. Neuropsychopharmacology, 2012, 37(12): 2693-2701. DOI: 10.1038/npp.2012.133.
[41]
TAE W S, HAM B J, PYUN S B, et al. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders[J]. J Clin Neurol, 2018, 14(2): 129-140. DOI: 10.3988/jcn.2018.14.2.129.
[42]
CANARIO E, CHEN D, BISWAL B. A review of resting-state fMRI and its use to examine psychiatric disorders[J]. Psychoradiology, 2021, 1(1): 42-53. DOI: 10.1093/psyrad/kkab003.
[43]
DENG J, HE J B, QIU L H. Research progress of magnetic resonance functional brain imaging in adolescent depression[J]. Chin J Magn Reson Imaging, 2022, 13(8): 101-103, 108. DOI: 10.12015/issn.1674-8034.2022.08.022.
[44]
RZEPA E, FISK J, MCCABE C. Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology[J]. J Psychopharmacol, 2017, 31(3): 303-311. DOI: 10.1177/0269881116681416.
[45]
CHANTILUKE K, HALARI R, SIMIC M, et al. Fronto-striato-cerebellar dysregulation in adolescents with depression during motivated attention[J]. Biol Psychiatry, 2012, 71(1): 59-67. DOI: 10.1016/j.biopsych.2011.09.005.
[46]
QUEVEDO K, LIU G, TEOH J Y, et al. Neurofeedback and neuroplasticity of visual self-processing in depressed and healthy adolescents: A preliminary study[J/OL]. Dev Cogn Neurosci, 2019, 40: 100707 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/31733523/. DOI: 10.1016/j.dcn.2019.100707.
[47]
QUEVEDO K, HARMS M, SAUDER M, et al. The neurobiology of self face recognition among depressed adolescents[J]. J Affect Disord, 2018, 229: 22-31. DOI: 10.1016/j.jad.2017.12.023.
[48]
LAU J Y, GOLDMAN D, BUZAS B, et al. BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents[J]. NeuroImage, 2010, 53(3): 952-961. DOI: 10.1016/j.neuroimage.2009.11.026.
[49]
CAPITÃO L P, CHAPMAN R, MURPHY S E, et al. A single dose of fluoxetine reduces neural limbic responses to anger in depressed adolescents[J/OL]. Transl Psychiatry, 2019, 9(1): 30 [2022-11-11]. https://www.nature.com/articles/s41398-018-0332-2. DOI: 10.1038/s41398-018-0332-2.
[50]
JAWORSKA N, YANG X R, KNOTT V, et al. A review of fMRI studies during visual emotive processing in major depressive disorder[J]. World J Biol Psychiatry, 2015, 16(7): 448-471. DOI: 10.3109/15622975.2014.885659.
[51]
LI X, WANG J. Abnormal neural activities in adults and youths with major depressive disorder during emotional processing: a meta-analysis[J]. Brain Imaging Behav, 2021, 15(2): 1134-1154. DOI: 10.1007/s11682-020-00299-2.
[52]
GAO W, YAN X Y, YUAN J J. Neural correlations between cognitive deficits and emotion regulation strategies: understanding emotion dysregulation in depression from the perspective of cognitive control and cognitive biases[J]. Psychoradiology, 2022, 2(3): 85-98. DOI: 10.1093/psyrad/kkac014.
[53]
JIAO Q, DING J, LU G, et al. Increased activity imbalance in fronto-subcortical circuits in adolescents with major depression[J/OL]. PloS One, 2011, 6(9): e25159 [2022-11-11]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025159. DOI: 10.1371/journal.pone.0025159.
[54]
ZHANG B, QI S, LIU S, et al. Altered spontaneous neural activity in the precuneus, middle and superior frontal gyri, and hippocampus in college students with subclinical depression[J/OL]. BMC Psychiatry, 2021, 21(1): 280 [2022-11-11]. https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-021-03292-1. DOI: 10.1186/s12888-021-03292-1.
[55]
PAN H Q, LI S Y, WANG Y L, et al. The changes of amplitude of low frequency fluctuation in adolescent depression patients with suicidal ideation: a resting-state functional magnetic resonance imaging study[J]. Chin J Behav Med & Brain Sci, 2019, 28(12): 1091-1095. DOI: 10.3760/cma.j.issn.1674-6554.2019.12.007.
[56]
ZHANG W Y, LI S Y, WANG Y L, et al. Influencing factors and mechanisms of cognitive impairment in adolescent patients with depression based on functional magnetic resonance imaging of amplitude of low frequency fluctuation[J]. Chin J Journal of Henan Medical Research, 2021, 30(1): 24-28. DOI: 10.3969/j.issn.1004-437X.2021.01.007.
[57]
MA X, LIU J, LIU T, et al. Altered Resting-State Functional Activity in Medication-Naive Patients With First-Episode Major Depression Disorder vs. Healthy Control: A Quantitative Meta-Analysis[J/OL]. Front Behav Neurosci, 2019, 13: 89 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/31133831/. DOI: 10.3389/fnbeh.2019.00089.
[58]
LI X, YU R, HUANG Q, et al. Alteration of Whole Brain ALFF/fALFF and Degree Centrality in Adolescents With Depression and Suicidal Ideation After Electroconvulsive Therapy: A Resting-State fMRI Study[J/OL]. Front Hum Neurosci, 2021, 15: 762343 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/34858155/. DOI: 10.3389/fnhum.2021.762343.
[59]
HELM K, VIOL K, WEIGER T M, et al. Neuronal connectivity in major depressive disorder: a systematic review[J]. Neuropsychiatr Dis Treat, 2018, 14: 2715-2737. DOI: 10.2147/ndt.S170989.
[60]
LEE J, PAVULURI M N, KIM J H, et al. Resting-state functional connectivity in medication-naïve adolescents with major depressive disorder[J]. Psychiatry Res Neuroimaging, 2019, 288: 37-43. DOI: 10.1016/j.pscychresns.2019.04.008.
[61]
FENG R, BAO W, ZHUO L, et al. Family Conflict Associated With Intrinsic Hippocampal-OFC Connectivity in Adolescent Depressive Disorder[J/OL]. Front Psychiatry, 2021, 12: 797898 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/35095611/. DOI: 10.3389/fpsyt.2021.797898.
[62]
HERRINGA R J, BIRN R M, RUTTLE P L, et al. Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence[J]. Proc Natl Acad Sci U S A, 2013, 110(47): 19119-19124. DOI: 10.1073/pnas.1310766110.
[63]
CHIN FATT C R, JHA M K, MINHAJUDDIN A, et al. Dysfunction of default mode network is associated with active suicidal ideation in youths and young adults with depression: Findings from the T-RAD study[J]. J Psychiatr Res, 2021, 142: 258-262. DOI: 10.1016/j.jpsychires.2021.07.047.
[64]
WU B, LI X, ZHOU J, et al. Altered Whole-Brain Functional Networks in Drug-Naïve, First-Episode Adolescents With Major Depression Disorder[J]. J Magn Reson Imaging, 2020, 52(6): 1790-1798. DOI: 10.1002/jmri.27270.
[65]
CHI S, SONG M, LEE J H, et al. Prospective study on resting state functional connectivity in adolescents with major depressive disorder after antidepressant treatment[J]. J Psychiatr Res, 2021, 142: 369-375. DOI: 10.1016/j.jpsychires.2021.08.026.
[66]
DRAGO T, O'REGAN P W, WELARATNE I, et al. A comprehensive regional neurochemical theory in depression: a protocol for the systematic review and meta-analysis of 1H-MRS studies in major depressive disorder[J/OL]. Syst Rev, 2018, 7(1): 158 [2022-11-11]. https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-018-0830-6. DOI: 10.1186/s13643-018-0830-6.
[67]
MORIGUCHI S, TAKAMIYA A, NODA Y, et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies[J]. Mol Psychiatry, 2019, 24(7): 952-964. DOI: 10.1038/s41380-018-0252-9.
[68]
RILEY C A, RENSHAW P F. Brain choline in major depression: A review of the literature[J]. Psychiatry Res Neuroimaging, 2018, 271: 142-153. DOI: 10.1016/j.pscychresns.2017.11.009.
[69]
LOTHMANN K, DEITERSEN J, ZILLES K, et al. New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities[J]. Hippocampus, 2021, 31(1): 56-78. DOI: 10.1002/hipo.23262.
[70]
LEFEBVRE D, LANGEVIN L M, JAWORSKA N, et al. A pilot study of hippocampal N-acetyl-aspartate in youth with treatment resistant major depression[J]. J Affect Disord, 2017, 207: 110-113. DOI: 10.1016/j.jad.2016.05.077.
[71]
ZHAO L, XIAO H, GAO X, et al. 1H-MRS analysis for prefrontal cortex, hippocampus and thalamus of adolescent patients with depression[J]. J Med Imaging Health Inform, 2015, 5(6): 1229-1232. DOI: 10.1166/jmihi.2015.1507
[72]
MANNIE Z N, FILIPPINI N, WILLIAMS C, et al. Structural and functional imaging of the hippocampus in young people at familial risk of depression[J]. Psychol Med, 2014, 44(14): 2939-2948. DOI: 10.1017/s0033291714000580.
[73]
CHENJI S, COX E, JAWORSKA N, et al. Body mass index and variability in hippocampal volume in youth with major depressive disorder[J]. J Affect Disord, 2021, 282: 415-425. DOI: 10.1016/j.jad.2020.12.176.
[74]
ZANG Y F, WANG Y Z, LI L. Research progress of magnetic resonance spectroscopy in the treatment evaluation of depression[J]. Journal of Clinical and Experimental Medicine, 2014, 13(19): 1648-1651. DOI: 10.3969/j.issn.1671-4695.2014.19.033.
[75]
GUAN J, DING Y, RONG Y, et al. Early Life Stress Increases Brain Glutamate and Induces Neurobehavioral Manifestations in Rats[J]. ACS Chem Neurosci, 2020, 11(24): 4169-4178. DOI: 10.1021/acschemneuro.0c00454.
[76]
POLETTI S, LOCATELLI C, FALINI A, et al. Adverse childhood experiences associate to reduced glutamate levels in the hippocampus of patients affected by mood disorders[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 71: 117-122. DOI: 10.1016/j.pnpbp.2016.07.007.
[77]
XI G, HUI J, ZHANG Z, et al. Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS[J/OL]. PloS one, 2011, 6(12): e28686 [2022-11-11]. https://pubmed.ncbi.nlm.nih.gov/22194886/. DOI: 10.1371/journal.pone.0028686.

PREV Research progress of multimodal MRI in evaluating the rapid antidepressant effect of ketamine
NEXT Research progress of chemical exchange saturation transfer in neurodegenerative diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn