Share:
Share this content in WeChat
X
Review
Research progress of MRI in diagnosis and treatment of lower grade glioma based on IDH and 1p/19q classification
YAN Hui  ZHANG Hui 

Cite this article as: YAN H, ZHANG H. Research progress of MRI in diagnosis and treatment of lower grade glioma based on IDH and 1p/19q classification[J]. Chin J Magn Reson Imaging, 2023, 14(4): 137-141, 159. DOI:10.12015/issn.1674-8034.2023.04.024.


[Abstract] Lower-grade gliomas (LrGG) include WHO grade 2 and 3 gliomas, and their biological characteristics and clinical course show high heterogeneity. The two key biomarkers of LrGG are isocitrate dehydrogenase (IDH) and the short arm of chromosome 1 and the long arm of chromosome 19 (1p/19q). In addition to providing tumor classification, these markers also provide important prognostic information and thus allow different treatment strategies to be developed. MRI can provide anatomical and functional information of central nervous system tumors, and has become a standard non-invasive tool for pre-treatment grading, treatment planning and follow-up observation of glioma. At the same time, radiomics extraction and mining of a large number of medical imaging features based on machine learning methods have been widely used to quantify tumor phenotype characteristics and predict clinical outcomes, providing assistance in solving clinical and scientific problems. Therefore, this article systematically summarizes the research progress of routine, functional MRI technology and radiomics in the clinical diagnosis and treatment of LrGG. The difficulties faced, and reviewed the research results of prognosis prediction and curative effect evaluation related to molecular typing in recent years, and finally made in-depth thinking and forward-looking outlook on the current challenges and future development directions in this field, with a view to fully understanding the intratumoral heterogeneity of LrGG, provide personalized guidance for its diagnosis, prognosis, treatment planning, and monitoring of treatment response.
[Keywords] lower-grade gliomas;astrocytoma;oligodendroglioma;magnetic resonance imaging;radiomics

YAN Hui1   ZHANG Hui2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: Zhang H, E-mail: zhanghui_mr@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. U21A20386, 81971593).
Received  2022-10-28
Accepted  2023-02-23
DOI: 10.12015/issn.1674-8034.2023.04.024
Cite this article as: YAN H, ZHANG H. Research progress of MRI in diagnosis and treatment of lower grade glioma based on IDH and 1p/19q classification[J]. Chin J Magn Reson Imaging, 2023, 14(4): 137-141, 159. DOI:10.12015/issn.1674-8034.2023.04.024.

[1]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[2]
Cancer Genome Atlas Research N, BRAT D J, VERHAAK R G, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas[J]. N Engl J Med, 2015, 372(26): 2481-2498. DOI: 10.1056/NEJMoa1402121.
[3]
DA R, WANG M, JIANG H, et al. BRAF (AMP) Frequently Co-occurs With IDH1/2, TP53, and ATRXMutations in Adult Patients With Gliomas and Is Associated With Poorer Survival Than That of Patients Harboring BRAF V600E)[J/OL]. Front Oncol, 2020, 10: 531968 [2022-11-02]. http://doi.org/10.3389/fonc.2020.531968. DOI: 10.3389/fonc.2020.531968.
[4]
GOYAL A, YOLCU Y U, GOYAL A, et al. The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance[J/OL]. Neurosurg Focus, 2019, 47(6): E13 [2022-11-02]. http://doi.org/10.3171/2019.9.Focus19660. DOI: 10.3171/2019.9.Focus19660.
[5]
ADAMOU A, BELTSIOS E T, PAPANAGIOTOU P. The T2-FLAIR Mismatch Sign as an Imaging Indicator of IDH-Mutant, 1p/19q Non-Codeleted Lower Grade Gliomas: A Systematic Review and Diagnostic Accuracy Meta-Analysis[J/OL]. Diagnostics (Basel), 2021, 11(9): 1620 [2022-11-02]. http://doi.org/10.3390/diagnostics11091620. DOI: 10.3390/diagnostics11091620.
[6]
HAN Z, CHEN Q, ZHANG L, et al. Radiogenomic association between the T2-FLAIR mismatch sign and IDH mutation status in adult patients with lower-grade gliomas: an updated systematic review and meta-analysis[J]. Eur Radiol, 2022, 32(8): 5339-5352. DOI: 10.1007/s00330-022-08607-8.
[7]
ALIOTTA E, DUTTA S W, FENG X, et al. Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign[J]. J Neurooncol, 2020, 149(2): 325-335. DOI: 10.1007/s11060-020-03611-8.
[8]
YANG X, LIN Y, XING Z, et al. Predicting 1p/19q codeletion status using diffusion-, susceptibility-, perfusion-weighted, and conventional MRI in IDH-mutant lower-grade gliomas[J]. Acta Radiol, 2021, 62(12): 1657-1665. DOI: 10.1177/0284185120973624.
[9]
ONISHI S, AMATYA V J, KOLAKSHYAPATI M, et al. T2-FLAIR mismatch sign in dysembryoplasticneuroepithelial tumor[J/OL]. Eur J Radiol, 2020, 126: 108924 [2022-11-02]. http://doi.org/10.1016/j.ejrad.2020.108924. DOI: 10.1016/j.ejrad.2020.108924.
[10]
QI S, YU L, LI H, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms[J]. Oncol Lett, 2014, 7(6): 1895-1902. DOI: 10.3892/ol.2014.2013.
[11]
XUE C Q, KE X A, DENG J, et al. MRI signs in differentiation of IDH-1 mutant type and wild type of lower-grade gliomas[J]. Chinese Journal of Medical Physics, 2020, 37(11): 1384-1388. DOI: 10.3969/j.issn.1005-202X.2020.11.008.
[12]
BAHRAMI N, HARTMAN S J, CHANG Y H, et al. Molecular classification of patients with grade Ⅱ/Ⅲ glioma using quantitative MRI characteristics[J]. J Neurooncol, 2018, 139(3): 633-642. DOI: 10.1007/s11060-018-2908-3.
[13]
EICHINGER P, ALBERTS E, DELBRIDGE C, et al. Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade Ⅱ/Ⅲ gliomas[J/OL]. Sci Rep, 2017, 7(1): 13396 [2022-11-02]. http://doi.org/10.1038/s41598-017-13679-4. DOI: 10.1038/s41598-017-13679-4.
[14]
LASOCKI A, GAILLARD F, GORELIK A, et al. MRI Features Can Predict 1p/19q Status in Intracranial Gliomas[J]. AJNR Am J Neuroradiol, 2018, 39(4): 687-692. DOI: 10.3174/ajnr.A5572.
[15]
FERACO P, FRANCIOSI R, PICORI L, et al. Conventional MRI-Derived Biomarkers of Adult-Type Diffuse Glioma Molecular Subtypes: A Comprehensive Review[J/OL]. Biomedicines, 2022, 10(10): 2490 [2022-11-02]. http://doi.org/10.3390/biomedicines10102490. DOI: 10.3390/biomedicines10102490.
[16]
JOHNSON D R, DIEHN F E, GIANNINI C, et al. Genetically Defined Oligodendroglioma Is Characterized by Indistinct Tumor Borders at MRI[J]. AJNR Am J Neuroradiol, 2017, 38(4): 678-684. DOI: 10.3174/ajnr.A5070.
[17]
MEGYESI J F, KACHUR E, LEE D H, et al. Imaging correlates of molecular signatures in oligodendrogliomas[J]. Clin Cancer Res, 2004, 10(13): 4303-4306. DOI: 10.1158/1078-0432.CCR-04-0209.
[18]
MAYNARD J, OKUCHI S, WASTLING S, et al. World Health Organization Grade Ⅱ/Ⅲ Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient[J]. Radiology, 2020, 296(1): 111-121. DOI: 10.1148/radiol.2020191832.
[19]
ALI L A, USMAN K M, FATIMA M, et al. Can Apparent Diffusion Coefficient Predict the Grade, Genotype, or Proliferation Index of Oligodendrogliomas[J]. Asian J Neurosurg, 2021, 16(4): 752-758. DOI: 10.4103/ajns.AJNS_520_20.
[20]
XU Z, KE C, LIU J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J/OL]. Eur J Radiol, 2021, 134: 109466 [2022-11-02]. http://doi.org/10.1016/j.ejrad.2020.109466. DOI: 10.1016/j.ejrad.2020.109466.
[21]
LI Y, QIN Q, ZHANG Y, et al. Noninvasive Determination of the IDH Status of Gliomas Using MRI and MRI-Based Radiomics: Impact on Diagnosis and Prognosis[J]. Curr Oncol, 2022, 29(10): 6893-6907. DOI: 10.3390/curroncol29100542.
[22]
FAN J K, CHENG Y, WANG T, et al. T2-FLAIR Radiomics in Predicting the 1p/19q Deficiency Status in Diffuse Lower Grade Gliomas[J]. Chin J Med Imaging, 2021, 29(5): 425-429. DOI: 10.3969/j.issn.1005-5185.2021.05.003.
[23]
FELLAH S, CAUDAL D, DE PAULA A M, et al. Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis?[J]. AJNR Am J Neuroradiol, 2013, 34(7): 1326-1333. DOI: 10.3174/ajnr.A3352.
[24]
LEE M K, PARK J E, JO Y, et al. Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign[J]. Eur Radiol, 2020, 30(2): 844-854. DOI: 10.1007/s00330-019-06395-2.
[25]
LASOCKI A, TSUI A, TACEY M A, et al. MRI grading versus histology: predicting survival of World Health Organization grade Ⅱ-Ⅳ astrocytomas[J]. AJNR Am J Neuroradiol, 2015, 36(1): 77-83. DOI: 10.3174/ajnr.A4077.
[26]
NAVEED M A, GOYAL P, MALHOTRA A, et al. Grading of oligodendroglial tumors of the brain with apparent diffusion coefficient, magnetic resonance spectroscopy, and dynamic susceptibility contrast imaging[J]. Neuroradiol J, 2018, 31(4): 379-385. DOI: 10.1177/1971400918757217.
[27]
SU C Q, LU S S, HAN Q Y, et al. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading[J]. Acta Radiol, 2019, 60(6): 777-787. DOI: 10.1177/0284185118801127.
[28]
SAINI J, GUPTA P K, SAHOO P, et al. Differentiation of grade Ⅱ/Ⅲ and grade Ⅳ glioma by combining "T1 contrast-enhanced brain perfusion imaging" and susceptibility-weighted quantitative imaging[J]. Neuroradiology, 2018, 60(1): 43-50. DOI: 10.1007/s00234-017-1942-8.
[29]
LIU X, TIAN W, KOLAR B, et al. The correlation of fractional anisotropy parameters with Ki-67 index, and the clinical implication in grading of non-enhancing gliomas and neuronal-glial tumors[J]. Magn Reson Imaging, 2020, 65: 129-135. DOI: 10.1016/j.mri.2019.10.009.
[30]
PARK Y W, CHOI Y S, AHN S S, et al. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors[J]. Korean J Radiol, 2019, 20(9): 1381-1389. DOI: 10.3348/kjr.2018.0814.
[31]
NASER M A, DEEN M J. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images[J/OL]. Comput Biol Med, 2020, 121: 103758 [2022-11-02]. http://doi.org/10.1016/j.compbiomed.2020.103758. DOI: 10.1016/j.compbiomed.2020.103758.
[32]
KIM M, JUNG S Y, PARK J E, et al. Diffusion-and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma[J]. Eur Radiol, 2020, 30(4): 2142-2151. DOI: 10.1007/s00330-019-06548-3.
[33]
CHANG E F, SMITH J S, CHANG S M, et al. Preoperative prognostic classification system for hemispheric low-grade gliomas in adults[J]. J Neurosurg, 2008, 109(5): 817-824. DOI: 10.3171/JNS/2008/109/11/0817.
[34]
NAKASU S, NAKASU Y. Malignant Progression of Diffuse Low-grade Gliomas: A Systematic Review and Meta-analysis on Incidence and Related Factors[J]. Neurol Med Chir (Tokyo), 2022, 62(4): 177-185. DOI: 10.2176/ jns-nmc.2021-0313.
[35]
DENG L, SHEN L, SHEN L, et al. Prognostic value of magnetic resonance imaging features in low-grade gliomas[J/OL]. Biosci Rep, 2019, 39(6): BSR20190544 [2022-11-02]. http://doi.org/10.1042/bsr20190544. DOI: 10.1042/bsr20190544.
[36]
ZHOU H, VALLIERES M, BAI H X, et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas[J]. Neuro Oncol, 2017, 19(6): 862-870. DOI: 10.1093/neuonc/now256.
[37]
SUN T, ZHAN Y B, YAN J, et al. Prognostic value of MR imaging features in lower-grade gliomas[J]. Henan Journal of Surgery, 2021, 27(3): 3-7.
[38]
BULAKBAŞı N, PAKSOY Y. Advanced imaging in adult diffusely infiltrating low-grade gliomas[J/OL]. Insights Imaging, 2019, 10(1): 122 [2022-11-02]. http://doi.org/10.1186/s13244-019-0793-8. DOI: 10.1186/ s13244-019-0793-8.
[39]
CHOI Y S, AHN S S, CHANG J H, et al. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction[J]. Eur Radiol, 2020, 30(7): 3834-3842. DOI: 10.1007/s00330- 020-06737-5.
[40]
LIU X, LI Y, QIAN Z, et al. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas[J]. Neuroimage Clin, 2018, 20: 1070-1077. DOI: 10.1016/j. nicl.2018.10.014.
[41]
Bureau of Medical Administration, National Health Commission of the People's Republic of China, China Anti-Cancer Association Committee of Glioma, Society for Neuro-Oncology of China (SNO-China), et al. Guidelines for the diagnosis and treatment of glioma (2022 edition)[J]. Chin J Neurosurg, 2022, 38(8): 757-777.
[42]
FUJII Y, MURAGAKI Y, MARUYAMA T, et al. Threshold of the extent of resection for WHO Grade Ⅲ gliomas: retrospective volumetric analysis of 122 cases using intraoperative MRI[J]. J Neurosurg, 2018, 129(1): 1-9. DOI: 10.3171/2017.3.JNS162383.
[43]
FUKUI A, MURAGAKI Y, SAITO T, et al. Impact of awake mapping on overall survival and extent of resection in patients with adult diffuse gliomas within or near eloquent areas: a retrospective propensity score-matched analysis of awake craniotomy vs. general anesthesia[J]. Acta Neurochir (Wien), 2022, 164(2): 395-404. DOI: 10.1007/s00701-021- 04999-6.
[44]
MOTOMURA K, CHALISE L, OHKA F, et al. Impact of the extent of resection on the survival of patients with grade Ⅱ and Ⅲ gliomas using awake brain mapping[J]. J Neurooncol, 2021, 153(2): 361-372. DOI: 10.1007/s11060-021-03776-w.
[45]
DELEV D, HEILAND D H, FRANCO P, et al. Surgical management of lower-grade glioma in the spotlight of the 2016 WHO classification system[J]. J Neurooncol, 2019, 141(1): 223-233. DOI: 10.1007/s11060- 018-03030-w.
[46]
PATEL T, BANDER E D, VENN R A, et al. The Role of Extent of Resection in IDH1 Wild-Type or Mutant Low-Grade Gliomas[J]. Neurosurgery, 2018, 82(6): 808-814. DOI: 10.1093/neuros/nyx265.
[47]
WIJNENGA M M J, FRENCH P J, DUBBINK H J, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis[J]. Neuro Oncol, 2018, 20(1): 103-112. DOI: 10.1093/neuonc/nox176.
[48]
JORDAN K, MORIN O, WAHL M, et al. An Open-Source Tool for Anisotropic Radiation Therapy Planning in Neuro-oncology Using DW-MRI Tractography[J/OL]. Front Oncol, 2019, 9: 810 [2023-02-22]. http://doi.org/10.3389/fonc.2019.00810. DOI: 10.3389/fonc.2019.00810.
[49]
MA B, BLAKELEY J O, HONG X, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas[J]. J Magn Reson Imaging, 2016, 44(2): 456-462. DOI: 10.1002/jmri.25159.
[50]
PALMISCIANO P, JAMJOOM A A B, TAYLOR D, et al. Attitudes of Patients and Their Relatives Toward Artificial Intelligence in Neurosurgery[J/OL]. World Neurosurg, 2020, 138: e627-e633 [2022-11-02]. http://doi.org/10.1016/j.wneu.2020.03.029. DOI: 10.1016/j.wneu.2020. 03.029.
[51]
LU V M, O'CONNOR K P, SHAH A H, et al. The prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literature[J]. J Neurooncol, 2020, 148(2): 221-229. DOI: 10.1007/s11060-020-03528-2.
[52]
STICHEL D, EBRAHIMI A, REUSS D, et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma[J]. Acta Neuropathol, 2018, 136(5): 793-803. DOI: 10.1007/s00401-018-1905-0.

PREV Progress of BOLD-fMRI study on rehabilitation of motor dysfunction in ischemic stroke treated with acupuncture
NEXT Advances in clinical and radiomics of distinguishing pseudoprogression and true progression in brain gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn