Share:
Share this content in WeChat
X
Review
Research progress of multimodal imaging technique in high altitude polycythemia
HE Xin  ZHANG Naihui  BAO Haihua 

Cite this article as: HE X, ZHANG N H, BAO H H. Research progress of multimodal imaging technique in high altitude polycythemia[J]. Chin J Magn Reson Imaging, 2023, 14(4): 198-202. DOI:10.12015/issn.1674-8034.2023.04.035.


[Abstract] High altitude polycythemia (HAPC) is a clinical syndrome caused by the gradual loss of acclimatization to the hypoxia environment at high altitude, which is characterized by excessive proliferation of red blood cells and hypoxemia. Excessive proliferation of red blood cells leads to increased blood viscosity and blood flow resistance, resulting in a series of symptoms, involving many systems and organs of the whole body. With the continuous development of imaging technology, multimodal imaging technology has contributed to the study of polycythemia at high altitude. This article reviews the research progress of multimodal imaging technology in HAPC, focusing on the role of multimodal imaging technology in studying the pathophysiological mechanism of HAPC, evaluating the treatment effect and predicting the disease progression.
[Keywords] high altitude polycythemia;computed tomography;magnetic resonance imaging;voxel-based morphometry;diffusion tensor imaging;diffusion kurtosis imaging;blood oxygen level dependent functional magnetic resonance imaging;proton magnetic resonance spectroscopy imaging

HE Xin   ZHANG Naihui   BAO Haihua*  

Medical Imaging Center, Qinghai University Affifiliated Hospital, Xining 810000, China

Corresponding author: Bao HH, E-mail: baohelen2@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Qinghai Provincial Key Clinical Specialty Project (No. Qing Cai She Zi [2020] 1301).
Received  2022-12-16
Accepted  2023-04-07
DOI: 10.12015/issn.1674-8034.2023.04.035
Cite this article as: HE X, ZHANG N H, BAO H H. Research progress of multimodal imaging technique in high altitude polycythemia[J]. Chin J Magn Reson Imaging, 2023, 14(4): 198-202. DOI:10.12015/issn.1674-8034.2023.04.035.

[1]
BAO H H, HE X, WANG F F, et al. Study of Brain Structure and Function in Chronic Mountain Sickness Based on fMRI[J/OL]. Front Neurol, 2022, 12: 763835 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777079. DOI: 10.3389/fneur.2021.763835.
[2]
BAO H H, LI R Y, HE M L, et al. DTI Study on Brain Structure and Cognitive Function in Patients with Chronic Mountain Sickness[J/OL]. Sci Rep, 2019, 9(1): 19334 [2022-12-15]. DOI: 10.1038/s41598-019-55498-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920146. DOI: 10.1038/s41598-019-55498-9.
[3]
YI H, YU Q J, ZENG D F, et al. Serum Inflammatory Factor Profiles in the Pathogenesis of High-Altitude Polycythemia and Mechanisms of Acclimation to High Altitudes[J/OL]. Mediat Inflamm, 2021, 2021: 8844438 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413029. DOI: 10.1155/2021/8844438.
[4]
Chronic High Altitude Disease Expert Group of the International Plateau Medical Association. The 6th International Conference on Plateau Medicine and Hypoxic Physiology promulgated the diagnostic criteria of chronic altitude disease in Qinghai[J]. Journal of Qinghai Medical College, 2005, 26(1): 3-5. DOI: 10.13452/j.cnki.jqmc.2005.01.002.
[5]
VILLAFUERTE F C, CORANTE N. Chronic Mountain Sickness: Clinical Aspects, Etiology, Management, and Treatment[J]. High Alt Med Biol, 2016, 17(2): 61-69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913504. DOI: 10.1089/ham.2016.0031.
[6]
WANG H, LIU D, SONG P, et al. Microarray-Based Prediction of Polycythemia after Exposure to High Altitudes[J/OL]. Genes-Basel, 2022, 13(7): 1193 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316656. DOI: 10.3390/genes13071193.
[7]
GETU A. Ethiopian Native Highlander's Adaptation to Chronic High-Altitude Hypoxia[J]. Biomed Res Int, 2022, 2022: 1-5. DOI: 10.1155/2022/5749382.
[8]
PENA E, EL A S, SIQUES P, et al. Oxidative Stress and Diseases Associated with High-Altitude Exposure[J/OL]. Antioxidants-Basel, 2022, 11(2): 267 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868315. DOI: 10.3390/antiox11020267.
[9]
BERMUDEZ D, AZAD P, FIGUEROA-MUJICA R, et al. Increased hypoxic proliferative response and gene expression in erythroid progenitor cells of Andean highlanders with chronic mountain sickness[J/OL]. Am J Physiol Regul Integr Comp Physiol, 2020, 318(1): R49-R56 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985794. DOI: 10.1152/ajpregu.00250.2019.
[10]
AZAD P, VILLAFUERTE F C, BERMUDEZ D, et al. Protective role of estrogen against excessive erythrocytosis in Monge's disease[J]. Exp Mol Med, 2021, 53(1): 125-135. DOI: 10.1038/s12276-020-00550-2.
[11]
CHEN J, BAO H H, ZHOU Z. Pathophysiology and imaging diagnosis of aortopulmonary artery dilation in chronic plateau disease[J]. Chin J Magn Reson Imaging, 2017, 8(9): 711-715. DOI: 10.12015/issn.1674-8034.2017.09.013.
[12]
LIU Y, HUANG H, ZHOU S, et al. Excessive Iron Availability Caused by Disorders of Interleukin-10 and Interleukin-22 Contributes to High Altitude Polycythemia[J/OL]. Front Physiol, 2018, 9: 548 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972294. DOI: 10.3389/fphys.2018.00548.
[13]
QUERIDO J S, SHEEL A W, CHEEMA R, et al. Effects of 10 days of modest intermittent hypoxia on circulating measures of inflammation in healthy humans[J]. Sleep Breath, 2012, 16(3): 657-662. DOI: 10.1007/s11325-011-0555-4.
[14]
YOSHIOKA K, MIYAKAWA A, OHNO Y, et al. Production of erythropoietin and multiple cytokines by metanephric adenoma results in erythrocytosis[J]. Pathol Int, 2007, 57(8): 529-536. DOI: 10.1111/j.1440-1827.2007.02136.x.
[15]
FAN X, MA L, ZHANG Z, et al. Associations of high-altitude polycythemia with polymorphisms in PIK3CD and COL4A3 in Tibetan populations[J/OL]. Hum Genomics, 2018, 12(1): 37 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062892. DOI: 10.1186/s40246-018-0169-z.
[16]
ZHANG Z, MA L, FAN X, et al. Targeted Sequencing Identifies the Genetic Variants Associated with High-altitude Polycythemia in the Tibetan Population[J]. Indian J Hematol Blo, 2022, 38(3): 556-565. DOI: 10.1007/s12288-021-01474-1.
[17]
RONEN R, ZHOU D, BAFNA V, et al. The genetic basis of chronic mountain sickness[J]. Physiology, 2014, 29(6): 403-412. DOI: 10.1152/physiol.00008.2014.
[18]
HU J J, SUN Y Q, WANG H Y, et al. Discussion on brain hemodynamics of CTP combined with 3D-ASL technology[J]. Chinese Journal of Radiological Health, 2021, 30(2): 214-219. DOI: 10.13491/j.issn.1004-714X.2021.02.020.
[19]
BAO H H, WANG D Y, ZHAO X P, et al. Cerebral Edema in Chronic Mountain Sickness: a New Finding[J/OL]. Sci Rep, 2017, 7: 43224 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324104. DOI: 10.1038/srep43224.
[20]
BEALL C M, REICHSMAN A B. Hemoglobin levels in a Himalayan high altitude population[J]. Am J Phys Anthropol, 1984, 63(3): 301-306. DOI: 10.1002/ajpa.1330630306.
[21]
TSERINGLUOBU, JIANG T M, JIN F, et al. Characteristics of coronary artery lesions and its interventional treatment efficacy in patients with coronary heart disease in high altitude areas of Tibet[J]. World Latest Medicine Information, 2018, 18(79): 13-14, 18. DOI: 10.19613/j.cnki.1671-3141.2018.79.006.
[22]
HUANG X S. Revolution CT on coronary artery morphology and myocardial perfusion in healthy people at different altitudes in plateau areas[D]. Xining: Qinghai University, 2018.
[23]
XU T T. Study of Revolution CT on coronary vascular diameter and myocardial perfusion in high-altitude polycythemia[D]. Xining: Qinghai University, 2020. DOI: 10.27740/d.cnki.gqhdx.2020.000283.
[24]
AZAD P, CALDWELL A B, RAMACHANDRAN S, et al. ARID1B, a molecular suppressor of erythropoiesis, is essential for the prevention of Monge's disease[J]. Exp Mol Med, 2022, 54(6): 777-787. DOI: 10.1038/s12276-022-00769-1.
[25]
RIMOLDI S F, REXHAJ E, VILLENA M, et al. Novel Insights into Cardiovascular Regulation in Patients with Chronic Mountain Sickness[J]. Adv Exp Med Biol, 2016, 903: 83-100. DOI: 10.1007/978-1-4899-7678-9_6.
[26]
GOTO M, HAGIWARA A, FUJITA S, et al. Influence of Mild White Matter Lesions on Voxel-based Morphometry[J]. Magn Reson Med Sci, 2021, 20(1): 40-46. DOI: 10.2463/mrms.mp.2019-0154.
[27]
VANASSE T J, FOX P M, BARRON D S, et al. BrainMap VBM: An environment for structural meta‐analysis[J]. Hum Brain Mapp, 2018, 39(8): 3308-3325. DOI: 10.1002/hbm.24078.
[28]
VU C, BUSH A, CHOI S, et al. Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias[J]. Am J Hematol, 2021, 96(8): 901-913. DOI: 10.1002/ajh.26203.
[29]
IWASAKI K, ZHANG R, ZUCKERMAN J H, et al. Impaired dynamic cerebral autoregulation at extreme high altitude even after acclimatization[J]. J Cerebr Blood F Met, 2011, 31(1): 283-292. DOI: 10.1038/jcbfm.2010.88.
[30]
LIU C X, BAO H H, LI W X, et al. VBM-MRI study on gray matter changes in patients with chronic altitude sickness[J]. Chin J Magn Reson Imaging, 2014, 5(3): 211-215. DOI: 10.3969/j.issn.1674-8034.2014.03.012.
[31]
MARTINEZ-HERAS E, GRUSSU F, PRADOS F, et al. Diffusion-Weighted Imaging: Recent Advances and Applications[J]. Semin Ultrasound CT, 2021, 42(5): 490-506. DOI: 10.1053/j.sult.2021.07.006.
[32]
TAE W, HAM B, PYUN S, et al. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders[J/OL]. J Clin Neurol, 2018, 14(2): 129 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897194. DOI: 10.3988/jcn.2018.14.2.129.
[33]
REN F Y, CAI L, WANG Y, et al. Brain magnetic resonance diffusion tensor imaging of chronic altitude disease[J]. Medical Journal of National Defending Forces in Northwest China, 2014, 35(4): 308-310. DOI: 10.16021/j.cnki.1007-8622.2014.04.007.
[34]
LIU C X. Study on brain structure and function of chronic plateau disease with 3T magnetic resonance DTI and BOLD imaging[D]. Xining: Qinghai University, 2014.
[35]
HENRIQUES R N, JESPERSEN S N, JONES D K, et al. Toward more robust and reproducible diffusion kurtosis imaging[J]. Magn Reson Med, 2021, 86(3): 1600-1613. DOI: 10.1002/mrm.28730.
[36]
JENSEN J H, FALANGOLA M F, HU C, et al. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction[J]. NMR Biomed, 2011, 24(5): 452-457. DOI: 10.1002/nbm.1610.
[37]
SUN Y, SUN J, ZHOU Y, et al. Assessment of in vivo microstructure alterations in gray matter using DKI in Internet gaming addiction[J/OL]. Behav Brain Funct, 2014, 10: 37 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282196. DOI: 10.1186/1744-9081-10-37.
[38]
JIAN Z, WANG X, LIU X, et al. Research on BOLD-fMRI Data Denoising Based on Bayesian Estimation and Adaptive Wavelet Threshold[J]. Oxid Med Cell Longev, 2021, 2021: 1-10. DOI: 10.1155/2021/8819384.
[39]
MOON H S, JIANG H, VO T T, et al. Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI[J]. Cereb Cortex, 2021, 31(9): 4053-4067. DOI: 10.1093/cercor/bhab068.
[40]
KONG D M, BAO H H, LI C W, et al. Default network change in patients with chronic altitude sickness: a study on functional connection based on posterior cingulate gyrus[J]. Chin J Magn Reson Imaging, 2016, 7(2): 107-112. DOI: 10.12015/issn.1674-8034.2016.02.005.
[41]
BARTNIK-OLSON B L, ALGER J R, BABIKIAN T, et al. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group[J]. Brain Imaging Behav, 2021, 15(2): 504-525. DOI: 10.1007/s11682-020-00330-6.
[42]
WANG L, CHEN G, DAI K. Hydrogen Proton Magnetic Resonance Spectroscopy (MRS) in Differential Diagnosis of Intracranial Tumors: A Systematic Review[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 7242192 [2022-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132669. DOI: 10.1155/2022/7242192.
[43]
YANG C S. Magnetic resonance spectroscopy of brain alterations in chronic altitude sickness[D]. Xining: Qinghai University, 2015.
[44]
BAI X X, BAO H H, HE X. Study on multi-voxel 1H-MRS in brain of chronic mountain sickness[J]. Chin J Magn Reson Imaging, 2022, 13(2): 42-46. DOI: 10.12015/issn.1674-8034.2022.02.009.
[45]
TONNIES E, TRUSHINA E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease[J]. J Alzheimers Dis, 2017, 57(4): 1105-1121. DOI: 10.3233/JAD-161088.
[46]
WARD R J, DEXTER D T, CRICHTON R R. Iron, Neuroinflammation and Neurodegeneration[J/OL]. Int J Mol Sci, 2022, 23(13): 7267 [2022-12-15]. DOI: 10.3390/ijms23137267.
[47]
XIE D M, BAO H H. Effect of chronic plateau disease on heart structure and function and application prospect of magnetic resonance in cardiac changes[J]. Chin J Magn Reson Imaging, 2015, 6(12): 953-956. DOI: 10.3969/j.issn.1674-8034.2015.12.015.
[48]
BAO H H, MENG L, XIE D M. Pathophysiological changes and magnetic resonance manifestations of pediatric plateau heart disease[J]. Chin J Magn Reson Imaging, 2015, 6(12): 927-931. DOI: 10.3969/j.issn.1674-8034.2015.12.009.
[49]
MENG L, BAO H H. 3.0 T MR cardiac imaging study on cardiac structure and function in patients with chronic altitude heart disease[J]. Chin J Radiol, 2016, 50(11): 829-832. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.005.
[50]
CHEN J. CMR to evaluate the effect of aortopulmonary artery dilation on right heart structure and function in patients with chronic altitude sickness[D]. Xining: Qinghai University, 2018.
[51]
WANG W, BAO H H. Preliminary study on aortopulmonary artery changes in patients with chronic altitude sickness by magnetic resonance phase contrast[J]. Chin J Magn Reson Imaging, 2018, 9(8): 595-599. DOI: 10.12015/issn.1674-8034.2018.08.007.

PREV Clinical value and research progress of MRI risk stratification in the Ovarian-Adnexal Reporting and Data System
NEXT Chinese expert consensus on peripheral nerve MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn