Share:
Share this content in WeChat
X
Special Focus
Application of deep learning reconstruction in improving the quality of neuromelanin magnetic resonance image
YU Yang  ZHAO Cheng  QI Zhigang  WU Tao  LU Jie 

Cite this article as: YU Y, ZHAO C, QI Z G, et al. Application of deep learning reconstruction in improving the quality of neuromelanin magnetic resonance image[J]. Chin J Magn Reson Imaging, 2023, 14(5): 11-15. DOI:10.12015/issn.1674-8034.2023.05.003.


[Abstract] Objective To improve the image quality and shorten the scanning time of neuromelanin magnetic resonance imaging sequence commonly used in clinic by deep learning reconstruction (DL Recon).Materials and Methods A total of 30 volunteers were prospectively enrolled, and each volunteer was scanned with DL Recon 2D fast spin echo (FSE) T1WI sequence and clinical traditional 2D FSE T1WI. The original images of DL Recon 2D FSE T1WI were saved. After scanning, the three groups of images were evaluated subjectively and objectively. The "five point method" was used to score the image uniformity, sharpness, artifact and overall image quality, the results were statistically described by interquartile spacing[M (P25, P75)]. The objective evaluation was carried out from the signal to noise ratio (SNR) of substantia nigra (SC) and locus coeruleus (LC) of the midbrain and the contrast noise ratio (CNR) between the above areas and surrounding tissues. The results were statistically analyzed by ANOVA.Results The score of image evenness of DL Recon 2D FSE T1WI images, original images and clinical traditional 2D FSE T1WI images was 4 (4, 5), 4 (4, 5), 4 (4, 5) (Z=1.31, P>0.05), the score of sharpness was 4 (4, 5), 3 (3, 4), 3 (3, 4) (Z=2.57, P<0.001), the score of artifacts was 3 (3, 4), 4 (4, 5), 4 (4, 5) (Z=3.43, P<0.001), and the score of overall image quality was 4 (4, 5), 3 (2, 3), 3 (3, 4) (Z=2.77, P<0.001). In the subjective scores of the three groups of images, there was no significant difference between the three groups except image uniformity. There were significant differences in sharpness, artifacts and image quality in DL Recon 2D FSE T1WI group (P<0.05). The objective evaluation results of DL Recon 2D FSE T1WI images, original images and clinical traditional 2D FSE T1WI images were as follows: SNRSN 250.38±9.02, 66.19±7.32, 110.91±10.10; SNRLC 220.41±12.02, 50.26±5.89, 90.38±11.70; CNRSN 25.30±3.42, 7.87±1.12, 8.01±1.38; CNRLC 30.17±2.23, 10.54±2.08, 11.11±1.89. The SNR and CNR of DL Recon 2D FSE T1WI group were higher than those of original image and traditional 2D FSE T1WI group, and the differences were statistically significant (P<0.001).Conclusions DL Recon 2D FSE T1WI sequence can improve the signal to noise ratio and contrast to noise ratio of the original sequence image under the condition of ensuring the spatial resolution by using the deep learning noise reduction algorithm of the original K-space data, and can greatly shorten the scanning time. It is expected to become the mainstream means of neuromelanin magnetic resonance imaging.
[Keywords] substantia nigra;locus coeruleus;signal to noise ratio;contrast signal to noise ratio;deep learning reconstruction;magnetic resonance imaging

YU Yang1, 2   ZHAO Cheng1, 2   QI Zhigang1, 2   WU Tao3   LU Jie1, 2*  

1 Department of Radiology and Nucler Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China

3 Clinical Marketing Department of MR, General Electric Medical (China) Co., Ltd., Beijing 100176, China

Corresponding author: Lu J, E-mail: imaginglu@hotmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Leading Talents Project from Huizhi Ascent Support Plan of Xuanwu Hospital (No. HZ2021ZCLJ005).
Received  2022-07-11
Accepted  2022-10-13
DOI: 10.12015/issn.1674-8034.2023.05.003
Cite this article as: YU Y, ZHAO C, QI Z G, et al. Application of deep learning reconstruction in improving the quality of neuromelanin magnetic resonance image[J]. Chin J Magn Reson Imaging, 2023, 14(5): 11-15. DOI:10.12015/issn.1674-8034.2023.05.003.

[1]
ZUCCA F A, BELLEI C, GIANNELLI S, et al. Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability[J]. J Neural Transm (Vienna), 2006, 113(6): 757-767. DOI: 10.1007/s00702-006-0453-2">10.1007/s00702-006-0453-2">10.1007/s00702-006-0453-2.
[2]
BAI F Y, GAO P. The advance of neuromelanin sensitive magnetic resonance imaging in Parkinson's disease[J]. Int J Med Radiol, 2021, 44(2): 165-169. DOI: 10.19300/j.2021.Z18366">10.19300/j.2021.Z18366">10.19300/j.2021.Z18366.
[3]
ZHAO H J, WANG X Y, ZHENG X, et al. MRI features and signal pattern of primary sinonasal malignant melanomas[J]. Chin J Radiol, 2021, 55(1): 29-33. DOI: 10.3760/cma.j.cn112149-20200107-00019">10.3760/cma.j.cn112149-20200107-00019">10.3760/cma.j.cn112149-20200107-00019.
[4]
WANG J, WEI M, CHENG O M. Advance of magnetic resonance imaging in Parkinson's disease subtypes[J]. Chin J Magn Reson Imaging, 2018, 9(11): 848-852. DOI: 10.12015/issn.1674-8034.2018.11.010">10.12015/issn.1674-8034.2018.11.010">10.12015/issn.1674-8034.2018.11.010.
[5]
CUI Y S, FENG T. Progress in structural imaging of substantia nigra lesions in Parkinson's disease[J]. Natl Med J China, 2022, 102(21): 1625-1630. DOI: 10.3760/cma.j.cn112137-20211111-02516">10.3760/cma.j.cn112137-20211111-02516">10.3760/cma.j.cn112137-20211111-02516.
[6]
YANG J Q, YANG X F, ZHONG C Q, et al. The value of neuromelanin-sensitive magnetic resonance imaging in the diagnosis of parkinson's disease[J]. J Clin Radiol, 2021, 40(5): 855-859. DOI: 10.13437/j.cnki.jcr.2021.05.005">10.13437/j.cnki.jcr.2021.05.005">10.13437/j.cnki.jcr.2021.05.005.
[7]
SAEED U, LANG A E, MASELLIS M. Neuroimaging advances in Parkinson's disease and atypical parkinsonian syndromes[J/OL]. Front Neurol, 2020, 11: 572976 [2022-07-10]. https://www.frontiersin.org/articles/10.3389/fneur.2020.572976/full. DOI: 10.3389/fneur.2020.572976">10.3389/fneur.2020.572976">10.3389/fneur.2020.572976.
[8]
VILA M. Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease[J]. Mov Disord, 2019, 34(10): 1440-1451. DOI: 10.1002/mds.27776">10.1002/mds.27776">10.1002/mds.27776.
[9]
YE R, RUA C, O'CALLAGHAN C, et al. An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field[J/OL]. NeuroImage, 2021, 225: 117487 [2022-07-10]. https://www.sciencedirect.com/science/article/pii/S1053811920309721. DOI: 10.1016/j.neuroimage.2020.117487">10.1016/j.neuroimage.2020.117487">10.1016/j.neuroimage.2020.117487.
[10]
ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease[J]. Prog Neurobiol, 2017, 155: 96-119. DOI: 10.1016/j.pneurobio.2015.09.012">10.1016/j.pneurobio.2015.09.012">10.1016/j.pneurobio.2015.09.012.
[11]
SULZER D, CASSIDY C, HORGA G, et al. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2018, 4 [2022-07-10]. https://www.nature.com/articles/s41531-018-0047-3. DOI: 10.1038/s41531-018-0047-3.
[12]
WANG J, LI Y, HUANG Z, et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson's disease and its phenotypes[J/OL]. Eur J Neurol, 2018, 25(7): 949-e73 [2022-07-10]. https://onlinelibrary.wiley.com/doi/abs/10.1111/ene.13628. DOI: 10.1111/ene.13628">10.1111/ene.13628">10.1111/ene.13628.
[13]
SASAKI M, SHIBATA E, TOHYAMA K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease[J]. Neuroreport, 2006, 17(11): 1215-1218. DOI: 10.1097/01.wnr.0000227984.84927.a7">10.1097/01.wnr.0000227984.84927.a7">10.1097/01.wnr.0000227984.84927.a7.
[14]
KIDOH M, SHINODA K, KITAJIMA M, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers[J]. Magn Reson Med Sci, 2020, 19(3): 195-206. DOI: 10.2463/mrms.mp.2019-0018">10.2463/mrms.mp.2019-0018">10.2463/mrms.mp.2019-0018.
[15]
YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes[J]. Eur Radiol, 2022, 32(9): 6118-6125. DOI: 10.1007/s00330-022-08729-z">10.1007/s00330-022-08729-z">10.1007/s00330-022-08729-z.
[16]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577">10.2214/AJR.21.26577">10.2214/AJR.21.26577.
[17]
WU T, AO G K, XU G Y, et al. Optimize the flip angle of SE sequence at 3.0T to increase gray-to-white matter contrast and decrease SAR value in brain MR examination[J]. J Pract Radiol, 2016, 32(1): 20-23. DOI: 10.3969/j.issn.1002-1671.2016.01.006">10.3969/j.issn.1002-1671.2016.01.006">10.3969/j.issn.1002-1671.2016.01.006.
[18]
PRASAD S, STEZIN A, LENKA A, et al. Three-dimensional neuromelanin-sensitive magnetic resonance imaging of the substantia nigra in Parkinson's disease[J]. Eur J Neurol, 2018, 25(4): 680-686. DOI: 10.1111/ene.13573">10.1111/ene.13573">10.1111/ene.13573.
[19]
TRUJILLO P, SUMMERS P E, FERRARI E, et al. Contrast mechanisms associated with neuromelanin-MRI[J]. Magn Reson Med, 2017, 78(5): 1790-1800. DOI: 10.1002/mrm.26584">10.1002/mrm.26584">10.1002/mrm.26584.
[20]
LIU Y, LI J C, HE N Y, et al. Optimizing neuromelanin contrast in the substantia nigra and locus coeruleus using a magnetization transfer contrast prepared 3D gradient recalled echo sequence[J/OL]. NeuroImage, 2020, 218: 116935 [2022-07-10]. https://www.sciencedirect.com/science/article/pii/s1053811920304213. DOI: 10.1016/j.neuroimage.2020.116935">10.1016/j.neuroimage.2020.116935">10.1016/j.neuroimage.2020.116935.
[21]
OGAWA R, KIDO T, NAKAMURA M, et al. Reconstruction of cardiovascular black-blood T2-weighted image by deep learning algorithm: a comparison with intensity filter[J/OL]. Acta Radiol Open, 2021, 10(9): 20584601211044779 [2022-07-10]. https://journals.sagepub.com/doi/full/10.1177/20584601211044779. DOI: 10.1177/20584601211044779">10.1177/20584601211044779">10.1177/20584601211044779.
[22]
SREEKUMARI A, SHANBHAG D, YEO D, et al. A deep learning-based approach to reduce rescan and recall rates in clinical MRI examinations[J]. AJNR Am J Neuroradiol, 2019, 40(2): 217-223. DOI: 10.3174/ajnr.A5926">10.3174/ajnr.A5926">10.3174/ajnr.A5926.
[23]
YI D, GRØVIK E, TONG E, et al. MRI pulse sequence integration for deep-learning-based brain metastases segmentation[J]. Med Phys, 2021, 48(10): 6020-6035. DOI: 10.1002/mp.15136">10.1002/mp.15136">10.1002/mp.15136.
[24]
KIM M, KIM H S, KIM H J, et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting[J]. Radiology, 2021, 298(1): 114-122. DOI: 10.1148/radiol.2020200723">10.1148/radiol.2020200723">10.1148/radiol.2020200723.
[25]
MUSCOGIURI G, MARTINI C, GATTI M, et al. Feasibility of late gadolinium enhancement (LGE) in ischemic cardiomyopathy using 2D-multisegment LGE combined with artificial intelligence reconstruction deep learning noise reduction algorithm[J]. Int J Cardiol, 2021, 343: 164-170. DOI: 10.1016/j.ijcard.2021.09.012">10.1016/j.ijcard.2021.09.012">10.1016/j.ijcard.2021.09.012.
[26]
KOCH K M, SHERAFATI M, ARPINAR VE, et al. Analysis and evaluation of a deep learning reconstruction approach with denoising for orthopedic MRI[J/OL]. Radiol Artif Intell, 20213(6): e200278 [2022-07-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637471/. DOI: 10.1148/ryai.2021200278.
[27]
SUN S, TAN E T, MINTZ D N, et al. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI[J]. Eur Radiol, 2022, 32(9): 6167-6177. DOI: 10.1007/s00330-022-08708-4">10.1007/s00330-022-08708-4">10.1007/s00330-022-08708-4.
[28]
ZOCHOWSKI K C, TAN E T, ARGENTIERI E C, et al. Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm[J]. Magn Reson Imaging, 2022, 85: 186-192. DOI: 10.1016/j.mri.2021.10.038">10.1016/j.mri.2021.10.038">10.1016/j.mri.2021.10.038.
[29]
WANG X Z, MA J F, BHOSALE P, et al. Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging[J]. Abdom Radiol (NY), 2021, 46(7): 3378-3386. DOI: 10.1007/s00261-021-02964-6">10.1007/s00261-021-02964-6">10.1007/s00261-021-02964-6.
[30]
Schmoeller M, Stadter C, Kick MK, et al. A novel approach to the holistic 3D characterization of weld seams—paving the way for deep learning-based process monitoring[J/OL]. Materials (Basel), 2021, 14(22): 6928 [2022-07-10]. https://www.mdpi.com/1996-1944/14/22/6928. DOI: 10.3390/ma14226928">10.3390/ma14226928">10.3390/ma14226928.

PREV The clinical application and development prospect of deep learning MRI reconstruction algorithm
NEXT Application of deep learning in intravoxel incoherent motion brain magnetic resonance imaging quality
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn