Share:
Share this content in WeChat
X
Special Focus
A comparative study on the enhancement of high resolution coronal image quality by deep learning reconstruction
YANG Jing  LI Qiongge  WU Tao  QI Zhigang  ZHAO Cheng  LU Jie 

Cite this article as: YANG J, LI Q G, WU T, et al. A comparative study on the enhancement of high resolution coronal image quality by deep learning reconstruction[J]. Chin J Magn Reson Imaging, 2023, 14(5): 21-24, 30. DOI:10.12015/issn.1674-8034.2023.05.005.


[Abstract] Objective To investigate the role of deep learning reconstruction (DLR) in improving image quality of high resolution T2 fluid-attenuated inversion-recovery sequency (FLAIR) coronal magnetic resonance imaging of hippocampus.Materials and Methods A total of 36 patients were prospectively enrolled in this study. GE Singna Premier 3.0 T MR scanner was used to perform high resolution T2-FLAIR coronal scanning of the hippocampus. Two diagnosticians assessed the image noise, artifacts, hippocampal structure, lesion, and diagnostic acceptance of origin reconstruction (OR) T2-FLAIR and DLR T2-FLAIR coronal images, respectively. Two technologists measured and calculated the signal to noise ratio (SNR), contrast noise ratio (CNR), and the difference in bilateral hippocampal signal intensity between the two groups of images.Results The noise, hippocampal structure identification, lesion identification and diagnostic acceptance score from DLR based coronal T2-FLAIR hippocampal image were higher than OR T2-FLAIR hippocampal coronal image (P<0.001), and there was no significant difference in artifacts evaluation (Z=-1.730; P=0.084). The SNR and CNR values of DLR T2-FLAIR hippocampal coronal images were significantly higher than those of OR T2-FLAIR hippocampal coronal images (t=-13.061, P<0.001; t=16.224; P<0.001). There was no significant difference in the difference of bilateral hippocampal signal between the two groups (t=-0.290; P=0.977).Conclusions Without prolonging the scanning time, Deep learning reconstruction can significantly improve the resolution of hippocampal structures and small lesions in high resolution T2-FLAIR coronal images. It can reduce noise, and provide high quality images for clinical use.
[Keywords] hippocampus;deep learning reconstruction;epilepsy;signal to noise ratio;contrast noise ratio;magnetic resonance imaging

YANG Jing1, 2   LI Qiongge1, 2   WU Tao3   QI Zhigang1, 2   ZHAO Cheng1, 2   LU Jie1, 2*  

1 Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Beijing Key Laboratory of MRI and Brain Informatics, Beijing 100053, China

3 Clinical Marketing Department of MR, General Electric Medical (China) Co., Ltd., Beijing 100176, China

Corresponding author: Lu J, E-mail: imaginglu@hotmail.com

Conflicts of interest   None.

Received  2022-07-02
Accepted  2022-10-12
DOI: 10.12015/issn.1674-8034.2023.05.005
Cite this article as: YANG J, LI Q G, WU T, et al. A comparative study on the enhancement of high resolution coronal image quality by deep learning reconstruction[J]. Chin J Magn Reson Imaging, 2023, 14(5): 21-24, 30. DOI:10.12015/issn.1674-8034.2023.05.005.

[1]
HASSANKHANI A, STEIN J M, HABOOSHEH A G, et al. Anatomical variations, mimics, and pitfalls in imaging of patients with epilepsy[J]. J Neuroimaging, 2021, 31(1): 20-34. DOI: 10.1111/jon.12809">10.1111/jon.12809">10.1111/jon.12809.
[2]
REBSAMEN M, RADOJEWSKI P, MCKINLEY R, et al. A quantitative imaging biomarker supporting radiological assessment of hippocampal sclerosis derived from deep learning-based segmentation of T1W-MRI[J/OL]. Front Neurol, 2022, 13: 812432 [2022-07-01]. https://boris.unibe.ch/166750/. DOI: 10.3389/fneur.2022.812432">10.3389/fneur.2022.812432">10.3389/fneur.2022.812432.
[3]
PAN K C, ZHAO L, GU S, et al. Deep learning-based automatic delineation of the hippocampus by MRI: geometric and dosimetric evaluation[J]. Radiat Oncol, 2021, 16(1): 12. DOI: 10.1186/s13014-020-01724-y">10.1186/s13014-020-01724-y">10.1186/s13014-020-01724-y.
[4]
ITO Y, Fukuda M, Matsuzawa H, et al. Deep learning-based diagnosis of temporal lobe epilepsy associated with hippocampal sclerosis: an MRI study[J/OL]. Epilepsy Res, 2021, 178: 106815 [2022-07-01]. https://www.sciencedirect.com/science/article/abs/pii/S0920121121002709. DOI: 10.1016/j.eplepsyres.2021.106815">10.1016/j.eplepsyres.2021.106815">10.1016/j.eplepsyres.2021.106815.
[5]
LI W, JIANG Y C, QIN Y J, et al. Structural and functional reorganization of contralateral hippocampus after temporal lobe epilepsy surgery[J/OL]. Neuroimage Clin, 2021, 31: 102714 [2022-07-01]. https://www.sciencedirect.com/science/article/pii/S2213158221001583. DOI: 10.1016/j.nicl.2021.102714">10.1016/j.nicl.2021.102714">10.1016/j.nicl.2021.102714.
[6]
CHANG C, HUANG C, ZHOU N Y, et al. The bumps under the hippocampus[J]. Hum Brain Mapp, 2018, 39(1): 472-490. DOI: 10.1002/hbm.23856">10.1002/hbm.23856">10.1002/hbm.23856.
[7]
KATABATHULA S, WANG Q Y, XU R. Predict Alzheimer's disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations[J]. Alzheimers Res Ther, 2021, 13(1): 104. DOI: 10.1186/s13195-021-00837-0.
[8]
OPPENHEIM C, DORMONT D, BIONDI A, et al. Loss of digitations of the hippocampal head on high-resolution fast spin-echo MR: a sign of mesial temporal sclerosis[J]. AJNR Am J Neuroradiol, 1998, 19(3): 457-463.
[9]
HOWE K L, DIMITRI D, HEYN C, et al. Histologically confirmed hippocampal structural features revealed by 3T MR imaging: potential to increase diagnostic specificity of mesial temporal sclerosis[J]. AJNR Am J Neuroradiol, 2010, 31(9): 1682-1689. DOI: 10.3174/ajnr.A2154.
[10]
HUESMANN G R, SCHWARB H, SMITH D R, et al. Hippocampal stiffness in mesial temporal lobe epilepsy measured with MR elastography: preliminary comparison with healthy participants[J/OL]. Neuroimage Clin, 2020, 27: 102313 [2022-07-01]. https://www.sciencedirect.com/science/article/pii/s2213158220301509. DOI: 10.1016/j.nicl.2020.102313.
[11]
WELLMER J, QUESADA C M, ROTHE L, et al. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages[J]. Epilepsia, 2013, 54(11): 1977-1987. DOI: 10.1111/epi.12375.
[12]
OPHEIM G, VAN DER KOLK A, MARKENROTH BLOCH K, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice[J]. Neurology, 2021, 96(7): 327-341. DOI: 10.1212/WNL.0000000000011413.
[13]
GUYOT A, FOUQUIER A B G, GERARDIN E, et al. A diffeomorphic vector field approach to analyze the thickness of the Hippocampus from 7 T MRI[J]. IEEE Trans Biomed Eng, 2021, 68(2): 393-403. DOI: 10.1109/TBME.2020.2999941.
[14]
ZENG G S, GUO Y, ZHAN J Y, et al. A review on deep learning MRI reconstruction without fully sampled k-space[J]. BMC Med Imaging, 2021, 21(1): 195. DOI: 10.1186/s12880-021-00727-9.
[15]
LIU H, LIU J, LI J, et al. DL-MRI: a unified framework of deep learning-based MRI super resolution[J/OL]. J Healthc Eng, 2021, 2021: 5594649 [2022-07-01]. https://www.hindawi.com/journals/jhe/2021/5594649/. DOI: 10.1155/2021/5594649.
[16]
EDUPUGANTI V, MARDANI M, VASANAWALA S, et al. Uncertainty quantification in deep MRI reconstruction[J]. IEEE Trans Med Imaging, 2021, 40(1): 239-250. DOI: 10.1109/TMI.2020.3025065.
[17]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577.
[18]
UEDA T, OHNO Y, YAMAMOTO K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging[J]. Radiology, 2022, 303(2): 373-381. DOI: 10.1148/radiol.204097.
[19]
YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes[J]. Eur Radiol, 2022, 32(9): 6118-6125. DOI: 10.1007/s00330-022-08729-z.
[20]
OGAWA R, KIDO T, NAKAMURA M, et al. Reconstruction of cardiovascular black-blood T2-weighted image by deep learning algorithm: a comparison with intensity filter[J/OL]. Acta Radiol Open, 2021, 10(9): 20584601211044779 [2022-07-01]. https://journals.sagepub.com/doi/pdf/10.1177/20584601211044779. DOI: 10.1177/20584601211044779.
[21]
SANDINO C M, LAI P, VASANAWALA S S, et al. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction[J]. Magn Reson Med, 2021, 85(1): 152-167. DOI: 10.1002/mrm.28420.
[22]
PARK J C, PARK K J, PARK M Y, et al. Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2022, 55(6): 1735-1744. DOI: 10.1002/jmri.27992.
[23]
Lee DH, Park JE, Nam YK, et al. Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma[J/OL]. Sci Rep, 2021, 11(1): 21302 [2022-07-01]. https://www.nature.com/articles/s41598-021-00558-2. DOI: 10.1038/s41598-021-00558-2.
[24]
KIM M, KIM H S, KIM H J, et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting[J]. Radiology, 2021, 298(1): 114-122. DOI: 10.1148/radiol.2020200723.
[25]
Van der VELDE N, HASSING H C, BAKKER B J, et al. Improvement of late gadolinium enhancement image quality using a deep learning-based reconstruction algorithm and its influence on myocardial scar quantification[J]. Eur Radiol, 2021, 31(6): 3846-3855. DOI: 10.1007/s00330-020-07461-w.
[26]
LEBEL R M. Performance characterization of a novel deep learning-based MR image reconstruction pipeline[EB/OL]. 2020: arXiv: 2008.06559 [2022-07-01]. https://arxiv.org/abs/2008.06559
[27]
LIAO C Y, WANG K, CAO X Z, et al. Detection of lesions in mesial temporal lobe epilepsy by using MR fingerprinting[J]. Radiology, 2018, 288(3): 804-812. DOI: 10.1148/radiol.2018172131.
[28]
CHOI J Y, KRISHNAN B, HU S Y, et al. Using magnetic resonance fingerprinting to characterize periventricular nodular heterotopias in pharmacoresistant epilepsy[J]. Epilepsia, 2022, 63(5): 1225-1237. DOI: 10.1111/epi.17191.
[29]
JORDAN S P, HU S Y, ROZADA I, et al. Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization[J/OL]. Proc Natl Acad Sci USA, 2021, 118(40): e2020516118 [2022-07-01]. https://www.pnas.org/doi/abs/10.1073/pnas.2020516118. DOI: 10.1073/pnas.2020516118.
[30]
CARDOSO G T M, GOMES-LEAL W, FRANCO E C S, et al. Compensatory hippocampal neurogenesis in the absence of cognitive impairment following experimental hippocampectomy in adult rats[J/OL]. Front Cell Neurosci, 2021, 15: 709291 [2022-07-01]. https://www.frontiersin.org/articles/10.3389/fncel.2021.709291/full. DOI: 10.3389/fncel.2021.709291.
[31]
TIPPAREDDY C, ZHAO W, SUNSHINE J L, et al. Magnetic resonance fingerprinting: an overview[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4189-4200. DOI: 10.1007/s00259-021-05384-2.
[32]
MOSTARDEIRO T R, PANDA A, WITTE R J, et al. Whole-brain 3D MR fingerprinting brain imaging: clinical validation and feasibility to patients with meningioma[J]. Magn Reson Mater Phy, 2021, 34(5): 697-706. DOI: 10.1007/s10334-021-00924-1.

PREV Application of deep learning in intravoxel incoherent motion brain magnetic resonance imaging quality
NEXT The MRI-based 3D-ResNet101 deep learning model for predicting preoperative grading of gliomas: A multicenter study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn