Share:
Share this content in WeChat
X
Special Focus
Feasibility study of deep learning reconstruction in the clinical application of MRI in bladder cancer
ZHANG Xinxin  WANG Yichen  WANG Sicong  LI Min  HU Mancang  CHEN Yan  ZHAO Xinming 

Cite this article as: ZHANG X X, WANG Y C, WANG S C, et al. Feasibility study of deep learning reconstruction in the clinical application of MRI in bladder cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 36-40. DOI:10.12015/issn.1674-8034.2023.05.008.


[Abstract] Objective To explore the impact of deep learning reconstruction (DLR) techniques on bladder cancer MRI image quality and scan time.Materials and Methods Patients with a pathological diagnosis of bladder cancer at first diagnosis were prospectively enrolled in this study. Conventional fast spin echo (FSE) T2WI, and DLR fast FSE-T2WI scanning were performed, respectively. The original fast FSE-T2WI without DLR was saved. The overall image quality score and artifacts score of three T2WI (conventional FSE-T2WI, fast FSE-T2WI, and DLR fast FSE-T2WI) were evaluated subjectively (5-point scale) by two radiologists. One radiologist measured the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). One-way ANOVA and Friedman test were performed on normally and non-normally distributed data, respectively, to compare and analyze the differences in SNR, CNR, overall image quality score, and artifacts score of three T2WI. The Weighted-Kappa test was used to validate the consistency of subjective scores between groups.Results A total of 32 patients [39-93 (65±11) years] with bladder cancer were enrolled in this study. The overall image quality score and artifacts score, SNR (63.2±25.5 vs. 94.7±40.8, P<0.05) and CNR (40.0±19.0 vs. 59.6±29.8, P<0.05) of fast FSE-T2WI with shortened scanning time were significantly lower than those of conventional FSE-T2WI. The application of DLR significantly improved the overall image quality, artifact score, SNR (256.7±102.9 vs. 63.2±25.5, P<0.05) and CNR (168.0±77.3 vs. 40.0±19.0, P<0.05) of fast FSE-T2WI. DLR fast FSE-T2WI demonstrated significantly higher SNR (256.7±102.9 vs. 94.7±40.8, P<0.05) and CNR (168.0±77.3 vs. 59.6±29.8, P<0.05) and overall image quality scores than those of conventional FSE-T2WI.Conclusions DLR allowed reduction of image scanning time and enabled improved image quality in both quantitative and qualitative manners, making it possible for bladder cancer patients to complete MRI more quickly.
[Keywords] bladder cancer;deep learning reconstruction;magnetic resonance imaging;signal-to-noise ratio;contrast-to-noise ratio

ZHANG Xinxin1   WANG Yichen1   WANG Sicong2   LI Min2   HU Mancang1   CHEN Yan1   ZHAO Xinming1*  

1 Department of Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

2 GE Healthcare, Beijing 100176, China

Corresponding author: Zhao XM, E-mail: zhaoxinming@cicams.ac.cn

Conflicts of interest   None.

Received  2022-10-08
Accepted  2023-04-28
DOI: 10.12015/issn.1674-8034.2023.05.008
Cite this article as: ZHANG X X, WANG Y C, WANG S C, et al. Feasibility study of deep learning reconstruction in the clinical application of MRI in bladder cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 36-40. DOI:10.12015/issn.1674-8034.2023.05.008.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660">10.3322/caac.21660">10.3322/caac.21660.
[2]
WITJES J A, BRUINS H M, CATHOMAS R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104. DOI: 10.1016/j.eururo.2020.03.055">10.1016/j.eururo.2020.03.055">10.1016/j.eururo.2020.03.055.
[3]
BABJUK M, BURGER M, CAPOUN O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ)[J]. Eur Urol, 2022, 81(1): 75-94. DOI: 10.1016/j.eururo.2021.08.010">10.1016/j.eururo.2021.08.010">10.1016/j.eururo.2021.08.010.
[4]
HUANG L, KONG Q C, LIU Z Z, et al. The diagnostic value of MR imaging in differentiating T staging of bladder cancer: a meta-analysis[J]. Radiology, 2018, 286(2): 502-511. DOI: 10.1148/radiol.2017171028">10.1148/radiol.2017171028">10.1148/radiol.2017171028.
[5]
PANEBIANCO V, NARUMI Y, ALTUN E, et al. Multiparametric magnetic resonance imaging for bladder cancer: development of Ⅵ-RADS (vesical imaging-reporting and data system)[J]. Eur Urol, 2018, 74(3): 294-306. DOI: 10.1016/j.eururo.2018.04.029">10.1016/j.eururo.2018.04.029">10.1016/j.eururo.2018.04.029.
[6]
LEE D, YOO J, TAK S, et al. Deep residual learning for accelerated MRI using magnitude and phase networks[J]. IEEE Trans Biomed Eng, 2018, 65(9): 1985-1995. DOI: 10.1109/TBME.2018.2821699">10.1109/TBME.2018.2821699">10.1109/TBME.2018.2821699.
[7]
HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magn Reson Med, 2018, 79(6): 3055-3071. DOI: 10.1002/mrm.26977">10.1002/mrm.26977">10.1002/mrm.26977.
[8]
AGGARWAL H K, MANI M P, JACOB M. MoDL: model-based deep learning architecture for inverse problems[J]. IEEE Trans Med Imaging, 2019, 38(2): 394-405. DOI: 10.1109/TMI.2018.2865356">10.1109/TMI.2018.2865356">10.1109/TMI.2018.2865356.
[9]
LEBEL R M. Performance characterization of a novel deep learning-based MR image reconstruction pipeline[EB/OL]. [2022-09-10]. https://arxiv.org/abs/2008.06559. DOI: 10.48550/arXiv.2008.06559">10.48550/arXiv.2008.06559">10.48550/arXiv.2008.06559.
[10]
PARK J C, PARK K J, PARK M Y, et al. Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2022, 55(6): 1735-1744. DOI: 10.1002/jmri.27992">10.1002/jmri.27992">10.1002/jmri.27992.
[11]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577">10.2214/AJR.21.26577">10.2214/AJR.21.26577.
[12]
YASAKA K, TANISHIMA T, OHTAKE Y, et al. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes[J]. Eur Radiol, 2022, 32(9): 6118-6125. DOI: 10.1007/s00330-022-08729-z">10.1007/s00330-022-08729-z">10.1007/s00330-022-08729-z.
[13]
TSUBOYAMA T, ONISHI H, NAKAMOTO A, et al. Impact of deep learning reconstruction combined with a sharpening filter on single-shot fast spin-echo T2-weighted magnetic resonance imaging of the uterus[J]. Invest Radiol, 2022, 57(6): 379-386. DOI: 10.1097/RLI.0000000000000847">10.1097/RLI.0000000000000847">10.1097/RLI.0000000000000847.
[14]
VAN DER VELDE N, HASSING H C, BAKKER B J, et al. Improvement of late gadolinium enhancement image quality using a deep learning-based reconstruction algorithm and its influence on myocardial scar quantification[J]. Eur Radiol, 2021, 31(6): 3846-3855. DOI: 10.1007/s00330-020-07461-w">10.1007/s00330-020-07461-w">10.1007/s00330-020-07461-w.
[15]
ZOCHOWSKI K C, TAN E T, ARGENTIERI E C, et al. Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm[J]. Magn Reson Imaging, 2022, 85: 186-192. DOI: 10.1016/j.mri.2021.10.038">10.1016/j.mri.2021.10.038">10.1016/j.mri.2021.10.038.
[16]
OGAWA R, KIDO T, NAKAMURA M, et al. Reconstruction of cardiovascular black-blood T2-weighted image by deep learning algorithm: a comparison with intensity filter[J/OL]. Acta Radiol Open, 2021, 10(9): 20584601211044779 [2023-04-20]. https://pubmed.ncbi.nlm.nih.gov/34594576. DOI: 10.1177/20584601211044779">10.1177/20584601211044779">10.1177/20584601211044779.
[17]
JOHNSON P M, TONG A, DONTHIREDDY A, et al. Deep learning reconstruction enables highly accelerated biparametric MR imaging of the prostate[J]. J Magn Reson Imaging, 2022, 56(1): 184-195. DOI: 10.1002/jmri.28024">10.1002/jmri.28024">10.1002/jmri.28024.
[18]
CHAIKA M, AFAT S, WESSLING D, et al. Deep learning-based super-resolution gradient echo imaging of the pancreas: improvement of image quality and reduction of acquisition time[J]. Diagn Interv Imaging, 2023, 104(2): 53-59. DOI: 10.1016/j.diii.2022.06.006">10.1016/j.diii.2022.06.006">10.1016/j.diii.2022.06.006.
[19]
SHENG R F, ZHENG L Y, JIN K P, et al. Single-breath-hold T2WI liver MRI with deep learning-based reconstruction: a clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRI[J]. Magn Reson Imaging, 2021, 81: 75-81. DOI: 10.1016/j.mri.2021.06.014">10.1016/j.mri.2021.06.014">10.1016/j.mri.2021.06.014.
[20]
HERRMANN J, GASSENMAIER S, NICKEL D, et al. Diagnostic confidence and feasibility of a deep learning accelerated HASTE sequence of the abdomen in a single breath-hold[J]. Invest Radiol, 2021, 56(5): 313-319. DOI: 10.1097/RLI.0000000000000743">10.1097/RLI.0000000000000743">10.1097/RLI.0000000000000743.
[21]
LI H L, HU C L, YANG Y, et al. Single-breath-hold T2WI MRI with artificial intelligence-assisted technique in liver imaging: As compared with conventional respiratory-triggered T2WI[J]. Magn Reson Imaging, 2022, 93: 175-180. DOI: 10.1016/j.mri.2022.08.012">10.1016/j.mri.2022.08.012">10.1016/j.mri.2022.08.012.
[22]
HERRMANN J, WESSLING D, NICKEL D, et al. Comprehensive clinical evaluation of a deep learning-accelerated, single-breath-hold abdominal HASTE at 1.5 T and 3 T[J]. Acad Radiol, 2023, 30(1): 93-102. DOI: 10.1016/j.acra.2022.03.018">10.1016/j.acra.2022.03.018">10.1016/j.acra.2022.03.018.
[23]
HERRMANN J, NICKEL D, MUGLER J P, et al. Development and evaluation of deep learning-accelerated single-breath-hold abdominal HASTE at 3 T using variable refocusing flip angles[J]. Invest Radiol, 2021, 56(10): 645-652. DOI: 10.1097/RLI.0000000000000785">10.1097/RLI.0000000000000785">10.1097/RLI.0000000000000785.
[24]
MULÉ S, KHARRAT R, ZERBIB P, et al. Fast T2-weighted liver MRI: image quality and solid focal lesions conspicuity using a deep learning accelerated single breath-hold HASTE fat-suppressed sequence[J]. Diagn Interv Imaging, 2022, 103(10): 479-485. DOI: 10.1016/j.diii.2022.05.001">10.1016/j.diii.2022.05.001">10.1016/j.diii.2022.05.001.
[25]
SHANBHOGUE K, TONG A, SMEREKA P, et al. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence[J]. Eur Radiol, 2021, 31(11): 8447-8457. DOI: 10.1007/s00330-021-08008-3">10.1007/s00330-021-08008-3">10.1007/s00330-021-08008-3.
[26]
GASSENMAIER S, AFAT S, NICKEL D, et al. Deep learning-accelerated T2-weighted imaging of the prostate: reduction of acquisition time and improvement of image quality[J/OL]. Eur J Radiol, 2021, 137: 109600 [2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/33610853. DOI: 10.1016/j.ejrad.2021.109600">10.1016/j.ejrad.2021.109600">10.1016/j.ejrad.2021.109600.
[27]
GASSENMAIER S, WARM V, NICKEL D, et al. Thin-slice prostate MRI enabled by deep learning image reconstruction[J/OL]. Cancers (Basel), 2023, 15(3): 578 [2023-04-23]. https://pubmed.ncbi.nlm.nih.gov/36765539. DOI: 10.3390/cancers15030578">10.3390/cancers15030578">10.3390/cancers15030578.
[28]
REN J, LI Y, LIU F S, et al. Comparison of a deep learning-accelerated T2-weighted turbo spin echo sequence and its conventional counterpart for female pelvic MRI: reduced acquisition times and improved image quality[J/OL]. Insights Imaging, 2022, 13(1): 193 [2023-04-23]. https://pubmed.ncbi.nlm.nih.gov/36512158. DOI: 10.1186/s13244-022-01321-5">10.1186/s13244-022-01321-5">10.1186/s13244-022-01321-5.
[29]
ALMANSOUR H, HERRMANN J, GASSENMAIER S, et al. Deep learning reconstruction for accelerated spine MRI: prospective analysis of interchangeability[J/OL]. Radiology, 2023, 306(3): e212922 [2023-04-23]. https://pubmed.ncbi.nlm.nih.gov/36318032. DOI: 10.1148/radiol.212922">10.1148/radiol.212922">10.1148/radiol.212922.
[30]
TAGUCHI S, TAMBO M, WATANABE M, et al. Prospective validation of vesical imaging-reporting and data system using a next-generation magnetic resonance imaging scanner-is denoising deep learning reconstruction useful?[J]. J Urol, 2021, 205(3): 686-692. DOI: 10.1097/JU.0000000000001373">10.1097/JU.0000000000001373">10.1097/JU.0000000000001373.

PREV Clinical feasibility of breath-hold fat-suppressed T2-weighted sequence with deep learning reconstruction for liver imaging
NEXT Novel deep learning-based T2-weighted imaging of the prostate provides superior image quality
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn