Share:
Share this content in WeChat
X
Clinical Article
Effect of structural abnormality of gray matter on motor and non-motor function in spinocerebellar ataxia type 3
LI Mengfei  JIANG Zhenzhen  CHEN Hui  LIU Chen  WANG Jian 

Cite this article as: LI M F, JIANG Z Z, CHEN H, et al. Effect of structural abnormality of gray matter on motor and non-motor function in spinocerebellar ataxia type 3[J]. Chin J Magn Reson Imaging, 2023, 14(5): 60-65, 84. DOI:10.12015/issn.1674-8034.2023.05.012.


[Abstract] Objective To explore the structural abnormality of gray matter and its effect on non-motor and motor function in patients with spinocerebellar ataxia type 3 (SCA3), so as to provide a theoretical basis for early diagnosis and proper treatment of SCA3.Materials and Methods One hundred and two subjects [49 patients and 53 age- and sex- matched healthy controls (HC) ] were enrolled in the study. The participants were assessed by the neuropsychological scale, including the Montreal Cognitive Assessment (MoCA), the Mini Mental State Examination (MMSE), the Rapid Verbal Retrieve (RVR), Digit Span Test (DST), the Activities of Daily Living (ADL), and the Hamilton Depression Scale (HAMD) . They also participated in the MRI evaluation. Voxel-based morphometry (VBM) was conducted to analyse the gray matter volume (GMV) alterations between the patients and the healthy controls. The partial correlation analysis was performed to identify the partial correlation between GMV and clinical scale scores with sex, age, and total intracranial volume (TIV) as covariables.Results Compared with the healthy control group, the scores of MoCA (Z=-4.578, P<0.001), MMSE (Z=-4.725, P<0.001) and RVR (Z=-5.773, P<0.001) in the SCA3 group decreased significantly, while the scores of ADL (Z=-6.447, P<0.001) and HAMD (Z=-5.285, P<0.001) increased significantly. The brain volume atrophied were discovered in the vermis Ⅸ lobe, bilateral cerebellum, caudate nucleus, cingulate gyrus, frontal lobe, hippocampus, precentral gyrus, putamen, supplementary motor area, and temporal lobe, left calcarine cortex, paracentral lobule, and para-hippocampal gyrus, right cuneus, fusiform gyrus and occipital lobe (P<0.001, FDR corrected). The increased ones were intralaminar nucleus, dorsal medial nucleus of left thalamus and ventral anterior nucleus of right thalamus (P<0.001, FDR corrected). The correlation analysis between differential brain area and the neuropsychological scale showed that Scale for the Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale (ICARS) scores were negatively correlated with the vermis Ⅸ lobule, bilateral cerebellum, precentral gyrus, and temporal lobe; left calcarine cortex, right caudate nucleus, cingulate gyrus, frontal lobe, fusiform gyrus and occipital lobe, while positively correlated with the intralaminar nucleus of left thalamus. MoCA score was positively correlated with vermis Ⅸ lobule and bilateral cerebellum. ADL score was negatively correlated with vermis Ⅸ lobule, bilateral cerebellum, left calcarine cortex, temporal lobe and right fusiform gyrus; HAMD score was negatively correlated with bilateral cerebellum, right frontal lobe and left temporal lobe; RVR score was positively correlated with bilateral cerebellum, right frontal lobe, left temporal lobe and Ⅸ lobule of vermis.Conclusions In addition to cerebellar structural damage, there are also extensive cognitive, memory and emotional brain damage in SCA3, which is closely related to motor and non-motor functional impairment, which provides theoretical guidance for the next selection of therapeutic targets for SCA3.
[Keywords] spinocerebellar ataxia type 3;magnetic resonance imaging;voxel-based morphometry;cerebellum

LI Mengfei   JIANG Zhenzhen   CHEN Hui   LIU Chen   WANG Jian*  

Department of Radiology, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China

Corresponding author: Wang J, E-mail: wangjian@aifmri.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81771814, 81601478, 81971587).
Received  2022-10-17
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.05.012
Cite this article as: LI M F, JIANG Z Z, CHEN H, et al. Effect of structural abnormality of gray matter on motor and non-motor function in spinocerebellar ataxia type 3[J]. Chin J Magn Reson Imaging, 2023, 14(5): 60-65, 84. DOI:10.12015/issn.1674-8034.2023.05.012.

[1]
TOULIS V, CASAROLI-MARANO R, CAMÓS-CARRERAS A, et al. Altered retinal structure and function in Spinocerebellar ataxia type 3[J/OL]. Neurobiol Dis, 2022, 170: 105774 [2022-02-20]. https://pubmed.ncbi.nlm.nih.gov/35605759/. DOI: 10.1016/j.nbd.2022.105774">10.1016/j.nbd.2022.105774">10.1016/j.nbd.2022.105774.
[2]
ELYOSEPH Z, MINTZ M, VAKIL E, et al. Selective Procedural Memory Impairment but Preserved Declarative Memory in Spinocerebellar Ataxia Type 3[J]. Cerebellum, 2020, 19(2): 226-234. DOI: 10.1007/s12311-019-01101-w">10.1007/s12311-019-01101-w">10.1007/s12311-019-01101-w.
[3]
MASTAMMANAVAR V S, KAMBLE N, YADAV R, et al. Non-motor symptoms in patients with autosomal dominant spinocerebellar ataxia[J]. Acta Neurol Scand, 2020, 142(4): 368-376. DOI: 10.1111/ane.13318">10.1111/ane.13318">10.1111/ane.13318.
[4]
FENG L, CHEN D B, HOU L, et al. Cognitive impairment in native Chinese with spinocerebellar ataxia type 3[J]. Eur Neurol, 2014, 71(5-6): 262-270. DOI: 10.1159/000357404">10.1159/000357404">10.1159/000357404.
[5]
BRAGA-NETO P, PEDROSO J L, ALESSI H, et al. Cerebellar cognitive affective syndrome in Machado Joseph disease: core clinical features[J]. Cerebellum, 2012, 11(2): 549-556. DOI: 10.1007/s12311-011-0318-6">10.1007/s12311-011-0318-6">10.1007/s12311-011-0318-6.
[6]
NEMOTO K. Understanding Voxel-Based Morphometry[J]. Brain Nerve, 2017, 69(5): 505-511. DOI: 10.11477/mf.1416200776">10.11477/mf.1416200776">10.11477/mf.1416200776.
[7]
WAN N, CHEN Z, WAN L, et al. MR Imaging of SCA3/MJD[J/OL]. Front Neurosci, 2020, 14: 749 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/32848545/. DOI: 10.3389/fnins.2020.00749">10.3389/fnins.2020.00749">10.3389/fnins.2020.00749.
[8]
MAAS R, KILLAARS S, VAN DE WARRENBURG B P C, et al. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients[J]. J Neurol, 2021, 268(9): 3456-3466. DOI: 10.1007/s00415-021-10516-7">10.1007/s00415-021-10516-7">10.1007/s00415-021-10516-7.
[9]
WU Y T, HUANG S R, JAO C W, et al. Impaired Efficiency and Resilience of Structural Network in Spinocerebellar Ataxia Type 3[J/OL]. Front Neurosci, 2018, 12: 935 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/30618564/. DOI: 10.3389/fnins.2018.00935">10.3389/fnins.2018.00935">10.3389/fnins.2018.00935.
[10]
HU J, CHEN X, LI M, et al. Pattern of cerebellar grey matter loss associated with ataxia severity in spinocerebellar ataxias type 3: a multi-voxel pattern analysis[J]. Brain Imaging Behav, 2022, 16(1): 379-388. DOI: 10.1007/s11682-021-00511-x">10.1007/s11682-021-00511-x">10.1007/s11682-021-00511-x.
[11]
LOPES T M, D'ABREU A, FRANÇA M C, et al. Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3[J]. J Neurol, 2013, 260(9): 2370-2379. DOI: 10.1007/s00415-013-6998-8">10.1007/s00415-013-6998-8">10.1007/s00415-013-6998-8.
[12]
PENG H, LIANG X, LONG Z, et al. Gene-Related Cerebellar Neurodegeneration in SCA3/MJD: A Case-Controlled Imaging-Genetic Study[J/OL]. Front Neurol, 2019, 10: 1025 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/31616370/. DOI: 10.3389/fneur.2019.01025">10.3389/fneur.2019.01025">10.3389/fneur.2019.01025.
[13]
SCHMITZ-HÜBSCH T, DU MONTCEL S T, BALIKO L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale[J]. Neurology, 2006, 66(11): 1717-1720. DOI: 10.1212/01.wnl.0000219042.60538.92">10.1212/01.wnl.0000219042.60538.92">10.1212/01.wnl.0000219042.60538.92.
[14]
STOREY E, TUCK K, HESTER R, et al. Inter-rater reliability of the International Cooperative Ataxia Rating Scale (ICARS)[J]. Mov Disord, 2004, 19(2): 190-192. DOI: 10.1002/mds.10657">10.1002/mds.10657">10.1002/mds.10657.
[15]
ZUO L, DONG Y, ZHU R, et al. Screening for cognitive impairment with the Montreal Cognitive Assessment in Chinese patients with acute mild stroke and transient ischaemic attack: a validation study[J/OL]. BMJ Open, 2016, 6(7): e011310 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/27406642/. DOI: 10.1136/bmjopen-2016-011310">10.1136/bmjopen-2016-011310">10.1136/bmjopen-2016-011310.
[16]
MITCHELL A J. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment[J]. J Psychiatr Res, 2009, 43(4): 411-431. DOI: 10.1016/j.jpsychires.2008.04.014">10.1016/j.jpsychires.2008.04.014">10.1016/j.jpsychires.2008.04.014.
[17]
KRAUSE A J, SIMON E B, MANDER B A, et al. The sleep-deprived human brain[J]. Nat Rev Neurosci, 2017, 18(7): 404-418. DOI: 10.1038/nrn.2017.55">10.1038/nrn.2017.55">10.1038/nrn.2017.55.
[18]
LIESTO S, SIPILÄ R, HIETANEN M, et al. Cognitive function is well preserved in a cohort of breast cancer survivors: Roles of cognitive reserve, resilience, and general health[J]. Breast (Edinburgh, Scotland), 2022, 65: 157-163. DOI: 10.1016/j.breast.2022.07.013">10.1016/j.breast.2022.07.013">10.1016/j.breast.2022.07.013.
[19]
LLINÀS-REGLÀ J, VILALTA-FRANCH J, LÓPEZ-POUSA S, et al. The Trail Making Test[J]. Assessment, 2017, 24(2): 183-196. DOI: 10.1177/1073191115602552">10.1177/1073191115602552">10.1177/1073191115602552.
[20]
LUCAS J A, IVNIK R J, SMITH G E, et al. Mayo's Older African Americans Normative Studies: norms for Boston Naming Test, Controlled Oral Word Association, Category Fluency, Animal Naming, Token Test, WRAT-3 Reading, Trail Making Test, Stroop Test, and Judgment of Line Orientation[J]. Clin Neuropsychol, 2005, 19(2): 243-269. DOI: 10.1080/13854040590945337">10.1080/13854040590945337">10.1080/13854040590945337.
[21]
RÜB U, DE VOS R A, BRUNT E R, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions[J]. Brain Pathol (Zurich, Switzerland), 2006, 16(3): 218-227. DOI: 10.1111/j.1750-3639.2006.00022.x">10.1111/j.1750-3639.2006.00022.x">10.1111/j.1750-3639.2006.00022.x.
[22]
POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinson's disease[J]. Mov Disord, 2015, 30(12): 1591-1601. DOI: 10.1002/mds.26424">10.1002/mds.26424">10.1002/mds.26424.
[23]
FUKUI S, KAWAKAMI M, OTAKA Y, et al. Activities of daily living among elderly persons with severe aortic stenosis[J]. Disabil Rehabil, 2021, 43(3): 338-344. DOI: 10.1080/09638288.2019.1624838">10.1080/09638288.2019.1624838">10.1080/09638288.2019.1624838.
[24]
HAMILTON M. A rating scale for depression[J]. J Neurol Neurosurg Psychiatry, 1960, 23(1): 56-62. DOI: 10.1136/jnnp.23.1.56">10.1136/jnnp.23.1.56">10.1136/jnnp.23.1.56.
[25]
KOZIOL L F, BUDDING D, ANDREASEN N, et al. Consensus paper: the cerebellum's role in movement and cognition[J]. Cerebellum, 2014, 13(1): 151-177. DOI: 10.1007/s12311-013-0511-x.
[26]
MOONEY R A, NI Z, SHIROTA Y, et al. Age-related strengthening of cerebello-cortical motor circuits[J]. Neurobiol Aging, 2022, 118: 9-12. DOI: 10.1016/j.neurobiolaging.2022.04.016.
[27]
MAITI B, RAWSON K S, TANENBAUM A B, et al. Functional Connectivity of Vermis Correlates with Future Gait Impairments in Parkinson's Disease[J]. Mov Disord, 2021, 36(11): 2559-2568. DOI: 10.1002/mds.28684.
[28]
FUJITA H, KODAMA T, DU LAC S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis[J/OL]. eLife, 2020, 9: e58613 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/32639229/. DOI: 10.7554/eLife.58613.
[29]
TAN H H G, WESTENENG H J, NITERT A D, et al. MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns[J]. Ann Neurol, 2022, 92(6): 1030-1045. DOI: 10.1002/ana.26488.
[30]
BASAIA S, AGOSTA F, FRANCIA A, et al. Cerebro-cerebellar motor networks in clinical subtypes of Parkinson's disease[J]. NPJ Parkinson's Dis, 2022, 8(1): 113. DOI: 10.1038/s41531-022-00377-w.
[31]
CHEN J, JIN H, ZHONG Y L, et al. Abnormal Low-Frequency Oscillations Reflect Abnormal Eye Movement and Stereovision in Patients With Comitant Exotropia[J]. Front Hum Neurosci, 2021, 15: 754234. DOI: 10.3389/fnhum.2021.754234.
[32]
GUIDA P, MICHIELS M, REDGRAVE P, et al. An fMRI meta-analysis of the role of the striatum in everyday-life vs laboratory-developed habits[J]. Neurosci Biobehav Rev, 2022, 141: 104826. DOI: 10.1016/j.neubiorev.2022.104826.
[33]
KANG N. Increased Cerebellar Gray Matter Volume in Athletes: A Voxel-Wise Coordinate-Based Meta-Analysis[J]. Res Q Exerc Sport, 2022: 1-12. DOI: 10.1080/02701367.2022.2026285.
[34]
NAKAYAMA Y, SUGAWARA S K, FUKUNAGA M, et al. The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans[J]. Neuroimage, 2022, 256: 119221. DOI: 10.1016/j.neuroimage.2022.119221.
[35]
ZHANG M, HUANG X, LI B, et al. Gray Matter Structural and Functional Alterations in Idiopathic Blepharospasm: A Multimodal Meta-Analysis of VBM and Functional Neuroimaging Studies[J]. Front Neurol, 2022, 13: 889714. DOI: 10.3389/fneur.2022.889714.
[36]
HEINRICHS-GRAHAM E, WIESMAN A I, EMBURY C M, et al. Differential impact of movement on the alpha and gamma dynamics serving visual processing[J]. J Neurophysiol, 2022, 127(4): 928-937. DOI: 10.1152/jn.00380.2021.
[37]
BONASSI G, PELOSIN E, LAGRAVINESE G, et al. Somatosensory inputs modulate the excitability of cerebellar-cortical interaction[J]. Clin Neurophysiol, 2021, 132(12): 3095-3103. DOI: 10.1016/j.clinph.2021.08.026.
[38]
HWANG K D, KIM S J, LEE Y S. Cerebellar Circuits for Classical Fear Conditioning[J]. Front Cell Neurosci, 2022, 16: 836948. DOI: 10.3389/fncel.2022.836948.
[39]
HABAS C. Functional Connectivity of the Cognitive Cerebellum[J]. Front Syst Neurosci, 2021, 15: 642225. DOI: 10.3389/fnsys.2021.642225.
[40]
SOLSTRAND DAHLBERG L, LUNGU O, DOYON J. Cerebellar Contribution to Motor and Non-motor Functions in Parkinson's Disease: A Meta-Analysis of fMRI Findings[J]. Front Neurol, 2020, 11: 127. DOI: 10.3389/fneur.2020.00127.
[41]
MARUFF P, TYLER P, BURT T, et al. Cognitive deficits in Machado-Joseph disease[J]. Ann Neurol, 1996, 40(3): 421-427. DOI: 10.1002/ana.410400311.
[42]
YAP K H, KESSELS R P C, AZMIN S, et al. Neurocognitive Changes in Spinocerebellar Ataxia Type 3: A Systematic Review with a Narrative Design[J]. Cerebellum (London, England), 2022, 21(2): 314-327. DOI: 10.1007/s12311-021-01282-3.
[43]
FIEZ J A, PETERSEN S E, CHENEY M K, et al. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study[J]. Brain, 1992, 115Pt 1: 155-178. DOI: 10.1093/brain/115.1.155.
[44]
STOODLEY C J, VALERA E M, SCHMAHMANN J D. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study[J]. Neuroimage, 2012, 59(2): 1560-1570. DOI: 10.1016/j.neuroimage.2011.08.065.
[45]
COSTA M M B. NEURAL CONTROL OF SWALLOWING[J]. Arq Gastroenterol, 2018, 55(Suppl 1): 61-75. DOI: 10.1590/s0004-2803.201800000-45.
[46]
MCLOUGHLIN G, GYURKOVICS M, PALMER J, et al. Midfrontal Theta Activity in Psychiatric Illness: An Index of Cognitive Vulnerabilities Across Disorders[J]. Biol Psychiatry, 2022, 91(2): 173-182. DOI: 10.1016/j.biopsych.2021.08.020.
[47]
MOORE D, JUNG M, HILLMAN C H, et al. Interrelationships between exercise, functional connectivity, and cognition among healthy adults: A systematic review[J/OL]. Psychophysiology, 2022, 59(6): e14014 [2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/35122693/. DOI: 10.1111/psyp.14014.
[48]
VAIDYA A R, BADRE D. Abstract task representations for inference and control[J]. Trends Cogn Sci, 2022, 26(6): 484-498. DOI: 10.1016/j.tics.2022.03.009.
[49]
MA K Y, CAI X Y, WANG X T, et al. Three-Dimensional Heterogeneity of Cerebellar Interposed Nucleus-Recipient Zones in the Thalamic Nuclei[J]. Neurosci Bull, 2021, 37(11): 1529-1541. DOI: 10.1007/s12264-021-00780-y.
[50]
BOSTAN A C, STRICK P L. The basal ganglia and the cerebellum: nodes in an integrated network[J]. Nat Rev Neurosci, 2018, 19(6): 338-350. DOI: 10.1038/s41583-018-0002-7.
[51]
WANG P S, WU Y T, WANG T Y, et al. Supratentorial and Infratentorial Lesions in Spinocerebellar Ataxia Type 3[J]. Front Neurol, 2020, 11: 124. DOI: 10.3389/fneur.2020.00124.

PREV Clinical feasibility of 2D FSE sequences of the knee MRI protocol using deep-learning image reconstruction
NEXT Application of automated fiber quantification in research of facial emotion recognition in patients with Alzheimer,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn