Share:
Share this content in WeChat
X
Clinical Article
Study on resting-state functional magnetic resonance imaging in plateau Tibetan with type 2 diabetes mellitus: Amplitude of low-frequency fluctuations and fractional amplitude of low-frequency fluctuations
HE Wanlin  LI Jinli  FENG Li  HU Xin  GUO Yongyue  HE Yuanyuan  LI Hengyan  ZHU Zhongyuan  MENG Jinli 

Cite this article as: HE W L, LI J L, FENG L, et al. Study on resting-state functional magnetic resonance imaging in plateau Tibetan with type 2 diabetes mellitus: Amplitude of low-frequency fluctuations and fractional amplitude of low-frequency fluctuations[J]. Chin J Magn Reson Imaging, 2023, 14(5): 72-78, 122. DOI:10.12015/issn.1674-8034.2023.05.014.


[Abstract] Objective To explore the differences in regional activity of resting-state functional magnetic resonance imaging (rs-fMRI) between plateau Tibetan with type 2 diabetes mellitus (T2DM) living in a plateau environment and healthy plateau Tibetan, and their relationship with cognitive function.Materials and Methods Fifty-three plateau Tibetan with type 2 diabetes mellitus (PTDM) and 51 plateau Tibetan healthy control (PTHC) in the analysis after age and sex matched were included in this study. Demographic, clinical data, neuropsychological test and rs-fMRI data were collected of both groups, and the rs-fMRI functional indexes the amplitude of amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuation (fALFF) were compared between two groups based on voxels to investigate the differences. We investigated the differences in ALFF and fALFF values between PTDM and PTHC groups and their correlation with demographics, clinical data and neuropsychological test results.Results Compared with the PTHC group, the PTDM group had reduced ALFF values in bilateral cerebellar region Ⅷ ) and reduced fALFF values in the right lingual gyrus and left cerebellar region I (P<0.05, FWE correction). Correlation analysis showed that the fALFF values of left cerebellar area Ⅷ (r=0.376, P=0.006), right cerebellar area Ⅷ (39, -54, -54) (r=0.411, P=0.002), right cerebellar area Ⅷ (15, -66, -54) (r=0.377, P=0.005) and right lingual gyrus (r=0.337, P=0.014) in the PTDM group were positively correlated with age; in the PTDM group were negatively correlated with low-density cholesterol (r=-0.283, P=0.049), glycated hemoglobin (r=-0.320, P=0.028) and two-hour glucose (r=-0.405, P=0.016). fALFF values of right lingual gyrus in the PTDM group were negatively correlated with Zung's anxiety self-rating scale (r=-0.399, P=0.012); fALFF values of left cerebellar area I in the PTDM group were positively correlated with smoking time (r=0.407, P=0.006), and negatively correlated with Pittsburgh Sleep Quality Index Scale (r=-0.327, P=0.033), Depression Self-Rating Scale (r=-0.320, P=0.041) and patient health questionnaire scores (r=-0.339, P=0.035).Conclusions The rs-fMRI regional activity is reduced in the cerebellum and right lingual gyrus in plateau Tibetan with type 2 diabetes mellitus compared to healthy controls, and correlated with age, glucose indicators, neuropsychology and cognitive function. Exploring the changes in brain function in Tibetan with type 2 diabetes mellitus can provide a better understanding of disease-related changes in cognitive function and related mechanisms.
[Keywords] type 2 diabetes mellitus;plateau Tibetan;amplitude of low-frequency fluctuations;fractional amplitude of low-frequency fluctuations;resting-state magnetic resonance imaging

HE Wanlin1   LI Jinli2   FENG Li1   HU Xin1   GUO Yongyue1   HE Yuanyuan1   LI Hengyan1   ZHU Zhongyuan1   MENG Jinli1, 3*  

1 Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu 610041, China

2 Department of Radiology, the People's Hospital of Jianyang City, Chengdu 641499, China

3 Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu 610041, China

Corresponding author: Meng JL, E-mail: 372042100@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Science and Technology Project of Sichuan Province (No. 2021YJ0161); Medical Research Project of Sichuan Province (No. Q20042); Science and Technology Project of Tibet Autonomous Region: The Central Government Guides Local Projects (No. XZ202102YD0032C); Hospital Level Key Project of Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (No. 2021-YJ-2).
Received  2022-12-08
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.05.014
Cite this article as: HE W L, LI J L, FENG L, et al. Study on resting-state functional magnetic resonance imaging in plateau Tibetan with type 2 diabetes mellitus: Amplitude of low-frequency fluctuations and fractional amplitude of low-frequency fluctuations[J]. Chin J Magn Reson Imaging, 2023, 14(5): 72-78, 122. DOI:10.12015/issn.1674-8034.2023.05.014.

[1]
DUCAT L, PHILIPSON L H, ANDERSON B J. The mental health comorbidities of diabetes[J]. JAMA, 2014, 312(7): 691-692. DOI: 10.1001/jama.2014.8040">10.1001/jama.2014.8040">10.1001/jama.2014.8040.
[2]
PENG W, LI K, YAN A F, et al. Prevalence, management, and associated factors of obesity, hypertension, and diabetes in Tibetan population compared with China overall[J/OL]. Int J Environ Res Public Health, 2022, 19(14): 8787 [2022-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316255. DOI: 10.3390/ijerph19148787">10.3390/ijerph19148787">10.3390/ijerph19148787.
[3]
YUE J, LUO Y Y, LI Y, et al. Clinical features of hospitalized Tibetan newly diagnosed type 2 diabetic patients in Lhasa[J]. Chin J Diabetes, 2019, 27(1): 22-25. DOI: 10.3969/j.issn.1006-6187.2019.01.006">10.3969/j.issn.1006-6187.2019.01.006">10.3969/j.issn.1006-6187.2019.01.006.
[4]
JONES D T. Neural networks, cognition, and diabetes: what is the connection?[J]. Diabetes, 2012, 61(7): 1653-1655. DOI: 10.2337/db12-0402">10.2337/db12-0402">10.2337/db12-0402.
[5]
LIU J K, LI Y, YANG X, et al. Regional spontaneous neural activity alterations in type 2 diabetes mellitus: a meta-analysis of resting-state functional MRI studies[J/OL]. Front Aging Neurosci, 2021, 13: 678359 [2022-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245688. DOI: 10.3389/fnagi.2021.678359">10.3389/fnagi.2021.678359">10.3389/fnagi.2021.678359.
[6]
XIA W Q, CHEN Y C, MA J H. Resting-state brain anomalies in type 2 diabetes: a meta-analysis[J/OL]. Front Aging Neurosci, 2017, 9: 14 [2022-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281680. DOI: 10.3389/fnagi.2017.00014">10.3389/fnagi.2017.00014">10.3389/fnagi.2017.00014.
[7]
PETOUSI N, ROBBINS P A. Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era[J]. J Appl Physiol (1985), 2014, 116(7): 875-884. DOI: 10.1152/japplphysiol.00605.2013">10.1152/japplphysiol.00605.2013">10.1152/japplphysiol.00605.2013.
[8]
ZHONG M Z, ZENG H Q, WANG D Y, et al. Structure and activity alteration in adult highland residents' cerebrum: Voxel-based morphometry and amplitude of low-frequency fluctuation study[J/OL]. Front Neurosci, 2022, 16: 1035308 [2022-11-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730815. DOI: 10.3389/fnins.2022.1035308">10.3389/fnins.2022.1035308">10.3389/fnins.2022.1035308.
[9]
ZUO X N, DI MARTINO A, KELLY C, et al. The oscillating brain: complex and reliable[J]. NeuroImage, 2010, 49(2): 1432-1445. DOI: 10.1016/j.neuroimage.2009.09.037">10.1016/j.neuroimage.2009.09.037">10.1016/j.neuroimage.2009.09.037.
[10]
BUYSSE D J, REYNOLDS C F, MONK T H, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research[J]. Psychiatry Res, 1989, 28(2): 193-213. DOI: 10.1016/0165-1781(89)90047-4">10.1016/0165-1781(89)90047-4">10.1016/0165-1781(89)90047-4.
[11]
SPITZER R L, KROENKE K, WILLIAMS J B. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Primary Care Evaluation of Mental Disorders. Patient Health Questionnaire[J]. JAMA, 1999, 282(18): 1737-1744. DOI: 10.1001/jama.282.18.1737">10.1001/jama.282.18.1737">10.1001/jama.282.18.1737.
[12]
SPITZER R L, KROENKE K, WILLIAMS J B W, et al. A brief measure for assessing generalized anxiety disorder[J/OL]. Arch Intern Med, 2006, 166(10): 1092 [2022-12-08]. https://pubmed.ncbi.nlm.nih.gov/16717171/. DOI: 10.1001/archinte.166.10.1092">10.1001/archinte.166.10.1092">10.1001/archinte.166.10.1092.
[13]
BIGGS J T, WYLIE L T, ZIEGLER V E. Validity of the zung self-rating depression scale[J]. Br J Psychiatry, 1978, 132: 381-385. DOI: 10.1192/bjp.132.4.381">10.1192/bjp.132.4.381">10.1192/bjp.132.4.381.
[14]
ZUNG W W. A rating instrument for anxiety disorders[J]. Psychosomatics, 1971, 12(6): 371-379. DOI: 10.1016/S0033-3182(71)71479-0">10.1016/S0033-3182(71)71479-0">10.1016/S0033-3182(71)71479-0.
[15]
WANG W, WANG L N. Application of Montreal cognitive assessment scale in screening patients with mild cognitive impairment[J]. Chin J Intern Med, 2007, 46(5): 414-416. DOI: 10.3760/j.issn:0578-1426.2007.05.031">10.3760/j.issn:0578-1426.2007.05.031">10.3760/j.issn:0578-1426.2007.05.031.
[16]
DICK J P, GUILOFF R J, STEWART A, et al. Mini-mental state examination in neurological patients[J]. J Neurol Neurosurg Psychiatry, 1984, 47(5): 496-499. DOI: 10.1136/jnnp.47.5.496">10.1136/jnnp.47.5.496">10.1136/jnnp.47.5.496.
[17]
LEUNG J L, LEE G T, LAM Y H, et al. The use of the Digit Span Test in screening for cognitive impairment in acute medical inpatients[J]. Int Psychogeriatr, 2011, 23(10): 1569-1574. DOI: 10.1017/S1041610211000792">10.1017/S1041610211000792">10.1017/S1041610211000792.
[18]
ELWOOD R W. The Wechsler Memory Scale-Revised: psychometric characteristics and clinical application[J]. Neuropsychol Rev, 1991, 2(2): 179-201. DOI: 10.1007/BF01109053">10.1007/BF01109053">10.1007/BF01109053.
[19]
VIK P, LEGARRETA M, RIFFEL S. Visual-Spatial Memory and Recall Test (V-SMART): validity and reliability[J]. Clin Neuropsychol, 2018, 32(8): 1454-1474. DOI: 10.1080/13854046.2017.1380845">10.1080/13854046.2017.1380845">10.1080/13854046.2017.1380845.
[20]
BAO Y W, SHEA Y F, CHIU P K, et al. The fractional amplitude of low-frequency fluctuations signals related to amyloid uptake in high-risk populations-a pilot fMRI study[J/OL]. Front Aging Neurosci, 2022, 14: 956222 [2022-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372772. DOI: 10.3389/fnagi.2022.956222">10.3389/fnagi.2022.956222">10.3389/fnagi.2022.956222.
[21]
LIU D H, DUAN S S, WEI P, et al. Aberrant brain spontaneous activity and synchronization in type 2 diabetes mellitus patients: a resting-state functional MRI study[J/OL] [2022-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308457. Front Aging Neuroscix, 2020, 12: 181. DOI: 10.3389/fnagi.2020.00181">10.3389/fnagi.2020.00181">10.3389/fnagi.2020.00181.
[22]
GARVEY W T, KWON S, ZHENG D Y, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance[J]. Diabetes, 2003, 52(2): 453-462. DOI: 10.2337/diabetes.52.2.453">10.2337/diabetes.52.2.453">10.2337/diabetes.52.2.453.
[23]
GROSSMAN A, GROSSMAN E. Blood pressure control in type 2 diabetic patients[J/OL]. Cardiovasc Diabetol, 2017, 16(1): 3 [2022-12-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217560. DOI: 10.1186/s12933-016-0485-3">10.1186/s12933-016-0485-3">10.1186/s12933-016-0485-3.
[24]
POLSKY S, AKTURK H K. Alcohol consumption, diabetes risk, and cardiovascular disease within diabetes[J/OL]. Curr Diab Rep, 2017, 17(12): 136 [2022-11-04]. https://link.springer.com/article/10.1007/s11892-017-0950-8. DOI: 10.1007/s11892-017-0950-8">10.1007/s11892-017-0950-8">10.1007/s11892-017-0950-8.
[25]
PAN A, WANG Y L, TALAEI M, et al. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis[J]. Lancet Diabetes Endocrinol, 2015, 3(12): 958-967. DOI: 10.1016/S2213-8587(15)00316-2">10.1016/S2213-8587(15)00316-2">10.1016/S2213-8587(15)00316-2.
[26]
ZHANG D S, QI F, GAO J, et al. Altered cerebellar-cerebral circuits in patients with type 2 diabetes mellitus[J/OL]. Front Neurosci, 2020, 14: 571210 [2022-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541847. DOI: 10.3389/fnins.2020.571210">10.3389/fnins.2020.571210">10.3389/fnins.2020.571210.
[27]
STAFFARONI A M, BROWN J A, CASALETTO K B, et al. The longitudinal trajectory of default mode network connectivity in healthy older adults varies As a function of age and is associated with changes in episodic memory and processing speed[J]. J Neurosci, 2018, 38(11): 2809-2817. DOI: 10.1523/JNEUROSCI.3067-17.2018">10.1523/JNEUROSCI.3067-17.2018">10.1523/JNEUROSCI.3067-17.2018.
[28]
PENG J, QU H, PENG J, et al. Abnormal spontaneous brain activity in type 2 diabetes with and without microangiopathy revealed by regional homogeneity[J]. Eur J Radiol, 2016, 85(3): 607-615. DOI: 10.1016/j.ejrad.2015.12.024">10.1016/j.ejrad.2015.12.024">10.1016/j.ejrad.2015.12.024.
[29]
NARASIMHAN A, FLORES R R, ROBBINS P D, et al. Role of cellular senescence in type Ⅱ diabetes[J/OL]. Endocrinology, 2021, 162(10): 136 [2022-12-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386762. DOI: 10.1210/endocr/bqab136">10.1210/endocr/bqab136">10.1210/endocr/bqab136.
[30]
PALMER A K, GUSTAFSON B, KIRKLAND J L, et al. Cellular senescence: at the nexus between ageing and diabetes[J]. Diabetologia, 2019, 62(10): 1835-1841. DOI: 10.1007/s00125-019-4934-x">10.1007/s00125-019-4934-x">10.1007/s00125-019-4934-x.
[31]
WANG L M, GAO P, ZHANG M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523. DOI: 10.1001/jama.2017.7596.
[32]
DE FELICE F G, FERREIRA S T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease[J]. Diabetes, 2014, 63(7): 2262-2272. DOI: 10.2337/db13-1954.
[33]
LO J C, LJUBICIC S, LEIBIGER B, et al. Adipsin is an adipokine that improves β cell function in diabetes[J]. Cell, 2014, 158(1): 41-53. DOI: 10.1016/j.cell.2014.06.005.
[34]
LIN Q X, LIU J, XU S P, et al. Epidemiological features of glycemic levels and relative determinants at different altitudes among tibetans in China: a cross-sectional population-based study[J/OL]. Front Public Health, 2020, 8: 472 [2022-12-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511752. DOI: 10.3389/fpubh.2020.00472.
[35]
RAVONA-SPRINGER R, HEYMANN A, SCHMEIDLER J, et al. Trajectories in glycemic control over time are associated with cognitive performance in elderly subjects with type 2 diabetes[J/OL]. PLoS One, 2014, 9(6): e97384 [2022-12-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041655. DOI: 10.1371/journal.pone.0097384.
[36]
MUNSHI M, GRANDE L, HAYES M, et al. Cognitive dysfunction is associated with poor diabetes control in older adults[J]. Diabetes Care, 2006, 29(8): 1794-1799. DOI: 10.2337/dc06-0506.
[37]
CUKIERMAN-YAFFE T, GERSTEIN H C, WILLIAMSON J D, et al. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial[J]. Diabetes Care, 2009, 32(2): 221-226. DOI: 10.2337/dc08-1153.
[38]
GEIJSELAERS S L C, SEP S J S, STEHOUWER C D A, et al. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review[J]. Lancet Diabetes Endocrinol, 2015, 3(1): 75-89. DOI: 10.1016/S2213-8587(14)70148-2.
[39]
CUI Y, JIAO Y, CHEN Y C, et al. Altered spontaneous brain activity in type 2 diabetes: a resting-state functional MRI study[J]. Diabetes, 2014, 63(2): 749-760. DOI: 10.2337/db13-0519.
[40]
XIA W Q, WANG S H, SUN Z L, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study[J]. Psychoneuroendocrinology, 2013, 38(11): 2493-2501. DOI: 10.1016/j.psyneuen.2013.05.012.
[41]
BAI W, GUO W, CHEN Z Q. The resting-state functional magnetic resonance imaging (rs-fMRI) study of amplitude of low frequency fluctuation in patients with Type 2 diabetes retinopathy[J]. J Med Imaging, 2018, 28(2): 191-195. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014
[42]
LIU D H, DUAN S S, ZHANG J Q, et al. Spontaneous brain activity alterations in T2DM patients with mild cognitive impairment: a resting-state fMRI study[J]. Chin J Magn Reson Imaging, 2015, 6(3): 161-167, 171. DOI: 10.3969/j.issn.1674-8034.2015.03.001.
[43]
LI Y F, LI M R, FENG Y, et al. Aberrant brain spontaneous activity and synchronization in type 2 diabetes mellitus subjects without mild cognitive impairment[J/OL]. Front Neurosci, 2021, 15: 749730 [2022-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716545. DOI: 10.3389/fnins.2021.749730.
[44]
MA R C W. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018, 61(6): 1249-1260. DOI: 10.1007/s00125-018-4557-7.
[45]
MEZUK B, EATON W W, ALBRECHT S, et al. Depression and type 2 diabetes over the lifespan: a meta-analysis[J]. Diabetes Care, 2008, 31(12): 2383-2390. DOI: 10.2337/dc08-0985.
[46]
LU Y S, HUANG G, ZHAO L P, et al. Study on low frequency amplitude of brain resting state ratio in patients with type 2 diabetes mellitus[J]. Natl Med J China, 2020, 100(31): 2470-2472. DOI: 10.3760/cma.j.cn112137-20200515-01544.
[47]
CAPPUCCIO F P, D'ELIA L, STRAZZULLO P, et al. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis[J]. Diabetes Care, 2010, 33(2): 414-420. DOI: 10.2337/dc09-1124.
[48]
FANG H, TU S, SHENG J F, et al. Depression in sleep disturbance: a review on a bidirectional relationship, mechanisms and treatment[J]. J Cell Mol Med, 2019, 23(4): 2324-2332. DOI: 10.1111/jcmm.14170.
[49]
JAUSSENT I, BOUYER J, ANCELIN M L, et al. Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly[J]. Sleep, 2011, 34(8): 1103-1110. DOI: 10.5665/SLEEP.1170.
[50]
MENG J L, LIU J, LI H L, et al. Impairments in intrinsic functional networks in type 2 diabetes: a meta-analysis of resting-state functional connectivity[J/OL]. Front Neuroendocrinol, 2022, 66: 100992 [2022-12-07]. https://pubmed.ncbi.nlm.nih.gov/35278579/. DOI: 10.1016/j.yfrne.2022.100992.

PREV Application of automated fiber quantification in research of facial emotion recognition in patients with Alzheimer,s disease
NEXT CE HRVW MRI to evaluate diagnostic difference of gadolinium-based contrast agents in intracranial plaque
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn