Share:
Share this content in WeChat
X
Clinical Article
Diagnostic value of DCE-MRI combined with DKI in predicting the triple negative breast cancer
LIU Shihan  SHAO Shuo  WEI Kunjie  ZHAO Xiaomeng  WU Jianwei  ZHENG Ning 

Cite this article as: LIU S H, SHAO S, WEI K J, et al. Diagnostic value of DCE-MRI combined with DKI in predicting the triple negative breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 110-115. DOI:10.12015/issn.1674-8034.2023.05.020.


[Abstract] Objective To explore dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) semi-quantitative analysis combined with diffusion kurtosis imaging (DKI) in diagnosis of triple negative breast cancer (TNBC).Materials and Methods The medical record datas of 138 patients with breast cancer in Jining First People's Hospital from November 2018 to July 2022 were retrospectively analyzed. The patients were divided into 39 cases of TNBC and 99 cases of non-TNBC according to pathological results. All patients underwent DCE-MRI and DKI examination. Analysis of DCE MRI semi-quantitative parameters [percentage of peak enhancement (Epeak), initial enhancement rate (IER), maximum slope (Slopemax), time to peak (TTP), signal enhancement ratio (SER), Wash-in, Wash-out] and DKI parameters [mean diffusion (MD), mean kurtosis (MK)]. The differences of DCE-MRI semi-quantitative parameters and DKI parameters between TNBC group and non-TNBC group were compared by t-test or Mann-Whitney U test. Receiver operating characteristic and area under the curve (AUC) was used to analyze the diagnostic efficacy of each parameter and the combined prediction model.Results The Wash-out, Slopemax and SER values of TNBC group were higher than those of non-TNBC group (P<0.05). The TTP and MK values of TNBC group were lower than those of non-TNBC group (P<0.05). There were no significant differences in IER, Epeak, Wash-in and MD between TNBC and non-TNBC groups (P>0.05). The sensitivity, specificity and AUC of the combined model (Wash-out, Slopemax, TTP, SER and MK) were 85.9%, 92.3% and 0.928 respectively, which were higher than the AUC of the five individual models (0.768, 0.815, 0.785, 0.781 and 0.769). The difference was statistically significant (P<0.01).Conclusions Wash-out, Slopemax, TTP, SER and MK parameters are important parameters for predicting TNBC, and combining DCE-MRI and DKI can further improve the predictive diagnostic efficiency of TNBC.
[Keywords] triple negative breast cancer;breast cancer;semi-quantitative;dynamic enhanced scanning;diffusion kurtosis imaging;magnetic resonance imaging

LIU Shihan1   SHAO Shuo2   WEI Kunjie1   ZHAO Xiaomeng1   WU Jianwei1   ZHENG Ning2*  

1 Clinical Medical College, Jining Medical University, Jining 272013, China

2 Magnatic Resonance Imaging Room, Jining First People's Hospital, Jining 272000, China

Corresponding author: Zheng N, E-mail: zhengning_369@163.com

Conflicts of interest   None.

Received  2022-11-11
Accepted  2023-04-28
DOI: 10.12015/issn.1674-8034.2023.05.020
Cite this article as: LIU S H, SHAO S, WEI K J, et al. Diagnostic value of DCE-MRI combined with DKI in predicting the triple negative breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 110-115. DOI:10.12015/issn.1674-8034.2023.05.020.

[1]
JOHANSSON A L V, TREWIN C B, FREDRIKSSON I, et al. In modern times, how important are breast cancer stage, grade and receptor subtype for survival: a population-based cohort study[J/OL]. Breast Cancer Res, 2021, 23(1): 17 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852363. DOI: 10.1186/s13058-021-01393-z">10.1186/s13058-021-01393-z">10.1186/s13058-021-01393-z.
[2]
YANG S X, POLLEY E C. Systemic treatment and radiotherapy, breast cancer subtypes, and survival after long-term clinical follow-up[J]. Breast Cancer Res Treat, 2019, 175(2): 287-295. DOI: 10.1007/s10549-019-05142-x">10.1007/s10549-019-05142-x">10.1007/s10549-019-05142-x.
[3]
CHEN H, MIN Y, XIANG K, et al. DCE-MRI performance in triple negative breast cancers: comparison with non-triple negative breast cancers[J]. Curr Med Imaging, 2022, 18(9): 970-976. DOI: 10.2174/1573405618666220225090944">10.2174/1573405618666220225090944">10.2174/1573405618666220225090944.
[4]
DASS S A, TAN K L, RAJAN R S, et al. Triple negative breast cancer: a review of present and future diagnostic modalities[J/OL]. Medicina (Kaunas), 2021, 57(1): 62 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826673. DOI: 10.3390/medicina57010062">10.3390/medicina57010062">10.3390/medicina57010062.
[5]
YIN L, DUAN J J, BIAN X W, et al. Triple-negative breast cancer molecular subtyping and treatment progress[J/OL]. Breast Cancer Res, 2020, 22(1): 61 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285581. DOI: 10.1186/s13058-020-01296-5">10.1186/s13058-020-01296-5">10.1186/s13058-020-01296-5.
[6]
YANG Z L, LI Y, ZHAN C A, et al. Evaluation of suspicious breast lesions with diffusion kurtosis MR imaging and connection with prognostic factors[J/OL]. Eur J Radiol, 2021, 145: 110014 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/34749223. DOI: 10.1016/j.ejrad.2021.110014">10.1016/j.ejrad.2021.110014">10.1016/j.ejrad.2021.110014.
[7]
TAŞKIN F, POLAT Y, ERDOĞDU İ H, et al. Problem-solving breast MRI: useful or a source of new problems?[J]. Diagn Interv Radiol, 2018, 24(5): 255-261. DOI: 10.5152/dir.2018.17504">10.5152/dir.2018.17504">10.5152/dir.2018.17504.
[8]
HUANG Y, LIN Y, HU W, et al. Diffusion kurtosis at 3.0T as an in vivo imaging marker for breast cancer characterization: correlation with prognostic factors[J]. J Magn Reson Imaging, 2019, 49(3): 845-856. DOI: 10.1002/jmri.26249">10.1002/jmri.26249">10.1002/jmri.26249.
[9]
BORTHAKUR A, WEINSTEIN S P, SCHNALL M D, et al. Comparison of study activity times for "full" versus "fast MRI" for breast cancer screening[J]. J Am Coll Radiol, 2019, 16(8): 1046-1051. DOI: 10.1016/j.jacr.2019.01.004">10.1016/j.jacr.2019.01.004">10.1016/j.jacr.2019.01.004.
[10]
XIE T W, ZHAO Q F, FU C X, et al. Improved value of whole-lesion histogram analysis on DCE parametric maps for diagnosing small breast cancer (≤ 1 cm)[J]. Eur Radiol, 2022, 32(3): 1634-1643. DOI: 10.1007/s00330-021-08244-7">10.1007/s00330-021-08244-7">10.1007/s00330-021-08244-7.
[11]
WANG M F, XU W, QIN T. The differential diagnosis of benign and malignant breast tumors with MRI quantitative and semi-quantitative parameters and the correlation analysis with biological indicators of breast cancer[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1174-1177. DOI: 10.12015/issn.1674-8034.2020.12.021">10.12015/issn.1674-8034.2020.12.021">10.12015/issn.1674-8034.2020.12.021.
[12]
WANG W W, ZHANG X D, ZHU L M, et al. Prediction of prognostic factors and genotypes in patients with breast cancer using multiple mathematical models of MR diffusion imaging[J/OL]. Front Oncol, 2022, 12: 825264 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841854. DOI: 10.3389/fonc.2022.825264">10.3389/fonc.2022.825264">10.3389/fonc.2022.825264.
[13]
IIMA M, KATAOKA M, KANAO S, et al. Intravoxel incoherent motion and quantitative non-Gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions[J]. Radiology, 2018, 287(2): 432-441. DOI: 10.1148/radiol.2017162853">10.1148/radiol.2017162853">10.1148/radiol.2017162853.
[14]
Breast Cancer Committee of Chinese Anti-Cancer Association. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013">10.19401/j.cnki.1007-3639.2021.10.013
[15]
ZHAO R, MA W J, TANG J, et al. Heterogeneity of enhancement kinetics in dynamic contrast-enhanced MRI and implication of distant metastasis in invasive breast cancer[J/OL]. Clin Radiol, 2020, 75(12): 961.e25-961.e32 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/32859381. DOI: 10.1016/j.crad.2020.07.030">10.1016/j.crad.2020.07.030">10.1016/j.crad.2020.07.030.
[16]
YANG X P, DONG M S, LI S, et al. Diffusion-weighted imaging or dynamic contrast-enhanced curve: a retrospective analysis of contrast-enhanced magnetic resonance imaging-based differential diagnoses of benign and malignant breast lesions[J]. Eur Radiol, 2020, 30(9): 4795-4805. DOI: 10.1007/s00330-020-06883-w">10.1007/s00330-020-06883-w">10.1007/s00330-020-06883-w.
[17]
LIU J N, LUO Y H. Imaging characteristic analysis of triple-negative breast cancer[J]. Oncoradiology, 2018, 27(2): 75-81. DOI: 10.3969/j.issn.1008-617X.2018.02.003">10.3969/j.issn.1008-617X.2018.02.003">10.3969/j.issn.1008-617X.2018.02.003.
[18]
TANG M X, MA X X, LI Y G, et al. The differential diagnosis value of MR apparent diffusion coefficient and dynamic contrast enhanced time-intensity curve for triple negative breast cancer[J]. J Pract Radiol, 2020, 36(10): 1596-1600. DOI: 10.3969/j.issn.1002-1671.2020.10.016">10.3969/j.issn.1002-1671.2020.10.016">10.3969/j.issn.1002-1671.2020.10.016.
[19]
HU J, WANG D B, CHAI W M, et al. MR imaging characteristics of triple-negative breast cancer[J]. Radiol Pract, 2010, 25(9)1011-1015. DOI: 10.3969/j.issn.1000-0313.2010.09.018">10.3969/j.issn.1000-0313.2010.09.018">10.3969/j.issn.1000-0313.2010.09.018
[20]
SONG L R, LI C L, YIN J D. Texture analysis using semiquantitative kinetic parameter maps from DCE-MRI: preoperative prediction of HER2 status in breast cancer[J/OL]. Front Oncol, 2021, 11: 675160 [2022-10-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217832. DOI: 10.3389/fonc.2021.675160">10.3389/fonc.2021.675160">10.3389/fonc.2021.675160.
[21]
YANG Z Q, CHEN X F, ZHANG T H, et al. Quantitative multiparametric MRI as an imaging biomarker for the prediction of breast cancer receptor status and molecular subtypes[J/OL]. Front Oncol, 2021, 11: 628824 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/34604024. DOI: 10.3389/fonc.2021.628824">10.3389/fonc.2021.628824">10.3389/fonc.2021.628824.
[22]
MATSUDA M, TSUDA T, EBIHARA R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: a comparison with non-triple-negative breast carcinoma[J/OL]. Eur J Radiol, 2021, 142: 109838 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/34217136. DOI: 10.1016/j.ejrad.2021.109838">10.1016/j.ejrad.2021.109838">10.1016/j.ejrad.2021.109838.
[23]
GIGLI S, AMABILE M I, DAVID E, et al. Morphological and semiquantitative kinetic analysis on dynamic contrast enhanced MRI in triple negative breast cancer patients[J]. Acad Radiol, 2019, 26(5): 620-625. DOI: 10.1016/j.acra.2018.06.014">10.1016/j.acra.2018.06.014">10.1016/j.acra.2018.06.014.
[24]
SUN Z Q, HU S D, SHAO L, et al. A pilot study of low-dose CT perfusion imaging (LDCTPI) technology in patients with triple-negative breast cancer[J]. J Xray Sci Technol, 2019, 27(3): 443-451. DOI: 10.3233/XST-180465">10.3233/XST-180465">10.3233/XST-180465.
[25]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508">10.1002/mrm.20508">10.1002/mrm.20508.
[26]
ZHANG D D, GENG X C, SUO S T, et al. The predictive value of DKI in breast cancer: does tumour subtype affect pathological response evaluations?[J]. Magn Reson Imaging, 2022, 85: 28-34. DOI: 10.1016/j.mri.2021.10.013">10.1016/j.mri.2021.10.013">10.1016/j.mri.2021.10.013.
[27]
ZHOU W P, ZAN X Y, HU X Y, et al. Characterization of breast lesions using diffusion kurtosis model-based imaging: an initial experience[J]. J Xray Sci Technol, 2020, 28(1): 157-169. DOI: 10.3233/XST-190590">10.3233/XST-190590">10.3233/XST-190590.
[28]
KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of invasive breast cancer: correlations with prognostic factors and molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120. DOI: 10.1002/jmri.27999">10.1002/jmri.27999">10.1002/jmri.27999.
[29]
WANG W W, LV S Q, XUN J, et al. Comparison of diffusion kurtosis imaging and dynamic contrast enhanced MRI in prediction of prognostic factors and molecular subtypes in patients with breast cancer[J/OL]. Eur J Radiol, 2022, 154: 110392 [2022-10-16]. https://pubmed.ncbi.nlm.nih.gov/35679701. DOI: 10.1016/j.ejrad.2022.110392">10.1016/j.ejrad.2022.110392">10.1016/j.ejrad.2022.110392.
[30]
LI T, LU L B, ZHUO Y Y, et al. Diagnostic value of diffusion kurtosis imaging combined with quantitative dynamic contrast-enhanced MRI in breast lesions[J]. Chin J Radiol, 2018, 52(6): 436-441. DOI: 10.3760/cma.j.issn.1005-1201.2018.06.006">10.3760/cma.j.issn.1005-1201.2018.06.006">10.3760/cma.j.issn.1005-1201.2018.06.006.
[31]
CHEN X F, FAN W X, CHENG F Y, et al. Diagnostic value of DCE-MRI combined with ADC value for triple-negative breast cancer[J]. J Pract Radiol, 2019, 35(8): 1258-1261. DOI: 10.3969/j.issn.1002-1671.2019.08.014">10.3969/j.issn.1002-1671.2019.08.014">10.3969/j.issn.1002-1671.2019.08.014.

PREV The value of muti-parametric MRI in different molecular subtypes of primary breast cancer
NEXT The diagnostic and prognositic value of cardiac magnetic resonance for evaluating dilated cardiomyopathy with ventricular arrhythmia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn