Share:
Share this content in WeChat
X
Clinical Article
Multi-center study on the prognostic value of cardiac magnetic resonance feature tracking technique for MACE after percutaneous coronary intervention in patients with acute myocardial infarction during hospitalization
ZHANG Yu  LU Lu  XU Junwei  ZHENG Yongqiang  YU Xiaoli  YIN Changqing  WANG Zhi 

Cite this article as: ZHANG Y, LU L, XU J W, et al. Multi-center study on the prognostic value of cardiac magnetic resonance feature tracking technique for MACE after percutaneous coronary intervention in patients with acute myocardial infarction during hospitalization[J]. Chin J Magn Reson Imaging, 2023, 14(5): 123-131. DOI:10.12015/issn.1674-8034.2023.05.022.


[Abstract] Objective To investigate the prognostic value of cardiac magnetic resonance feature tracking (CMR-FT) technique in major cardiovascular adverse events (MACE) in hospital after interventional therapy for acute myocardial infarction (AMI).Materials and Methods Three hundred patients with AMI admitted from January 2019 to October 2022 were selected as study subjects. They were divided into two groups according to whether MACE occurred, namely, MACE group (n=79) and control group (n=221, non MACE group). Both groups of patients underwent percutaneous coronary intervention (PCI) within 12 hours of onset, and CMR was performed 48-72 hours after operation. At the same time, MACE were monitored within 2 weeks of hospitalization. The baseline data and myocardial strain parameters of the two groups were compared. The independent predictors of MACE in the hospital after intervention therapy for AMI were analyzed by Cox regression, and the diagnostic efficacy of myocardial strain parameters was evaluated by drawing the subject's working characteristic curve.Results Cox regression analysis showed that the left ventricular global longitudinal strain [GLS, hazard ratio (HR): 1.24, 95% confidence interval (CI): 1.09-1.37, P<0.001] and the left ventricular global circumferential strain (GCS, HR: 1.17, 95% CI: 1.08-1.22, P<0.001) were independent predictors of adverse cardiovascular events after percutaneous coronary intervention in patients with AMI. The diagnostic efficacy of GLS was the best, area under the curve (AUC) was 0.882 (95% CI: 0.706-0.991), and the cut-off value of GLS was -11.9%. When GLS<-11.9% (less than its absolute value), the incidence of MACE was significantly increased, with sensitivity of 89%, specificity of 82%, and Youden index of 0.80. The diagnostic efficacy of GCS was the second, AUC was 0.735 (95% CI: 0.631-0.958), and the cut-off value of GCS was -17.8%. When GCS<-17.8% (less than its absolute value), the incidence of MACE was significantly increased, with sensitivity of 78%, specificity of 65%, and Youden index of 0.75. Kaplan-Meier curve analysis showed that the overall survival rate of patients with GLS<-11.9% was lower than that of patients with GLS≥-11.9% (P<0.05), and the overall survival rate of patients with GCS<-17.8% was lower than that of patients with GCS≥-17.8% (P<0.05).Conclusions CMR-FT technique has a high prognostic value for MACE in the hospital after PCI in AMI, it can assist in early clinical prediction and prevention of MACE during hospitalization after myocardial infarction, and improve the short-term prognosis of patients with myocardial infarction.
[Keywords] coronary heart disease;acute myocardial infarction;major adverse cardiovascular events;magnetic resonance imaging;feature tracking technique;efficacy prediction

ZHANG Yu1   LU Lu2   XU Junwei3*   ZHENG Yongqiang1   YU Xiaoli2   YIN Changqing1   WANG Zhi3  

1 Department of Radiology, the Affiliated Jiangyin Hospital of Nantong University, Jiangyin People's Hospital, Wuxi 214431, China

2 Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China

3 Department of Cardiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Chest Hospital, Nanjing 210029, China

Corresponding author: Xu JW, E-mail: christxjw@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81570365); Nanjing Medical University Education Development Foundation (No. NMUB2020229).
Received  2022-12-07
Accepted  2023-04-28
DOI: 10.12015/issn.1674-8034.2023.05.022
Cite this article as: ZHANG Y, LU L, XU J W, et al. Multi-center study on the prognostic value of cardiac magnetic resonance feature tracking technique for MACE after percutaneous coronary intervention in patients with acute myocardial infarction during hospitalization[J]. Chin J Magn Reson Imaging, 2023, 14(5): 123-131. DOI:10.12015/issn.1674-8034.2023.05.022.

[1]
BERGMARK B A, MORROW D A. Beyond the ISCHEMIA trial: revascularization for stable ischemic heart disease in patients with high-risk coronary anatomical features[J/OL]. J Am Heart Assoc, 2021, 10(1): e019974 [2022-10-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955493/. DOI: 10.1161/JAHA.120.019974">10.1161/JAHA.120.019974">10.1161/JAHA.120.019974.
[2]
DAUERMAN H L, IBANEZ B. The edge of time in acute myocardial infarction[J]. J Am Coll Cardiol, 2021, 77(15): 1871-1874. DOI: 10.1016/j.jacc.2021.03.003">10.1016/j.jacc.2021.03.003">10.1016/j.jacc.2021.03.003.
[3]
MITSIS A, GRAGNANO F. Myocardial infarction with and without ST-segment elevation: a contemporary reappraisal of similarities and differences[J/OL]. Curr Cardiol Rev, 2021, 17(4): e230421189013 [2022-10-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762150/. DOI: 10.2174/1573403X16999201210195702">10.2174/1573403X16999201210195702">10.2174/1573403X16999201210195702.
[4]
AKBARI T, AL-LAMEE R. Percutaneous coronary intervention in multi-vessel disease[J]. Cardiovasc Revasc Med, 2022, 44: 80-91. DOI: 10.1016/j.carrev.2022.06.254">10.1016/j.carrev.2022.06.254">10.1016/j.carrev.2022.06.254.
[5]
CAPODANNO D, BHATT D L, GIBSON C M, et al. Bleeding avoidance strategies in percutaneous coronary intervention[J]. Nat Rev Cardiol, 2022, 19(2): 117-132. DOI: 10.1038/s41569-021-00598-1">10.1038/s41569-021-00598-1">10.1038/s41569-021-00598-1.
[6]
ANGIOLILLO D A, GALLI M, COLLET J P, et al. Antiplatelet therapy after percutaneous coronary intervention[J/OL]. EuroIntervention, 2022, 17(17): e1371-e1396 [2022-12-15]. https://eurointervention.pcronline.com/article/antiplatelet-therapy-after-percutaneous-coronary-intervention. DOI: 10.4244/eij-d-21-00904">10.4244/eij-d-21-00904">10.4244/eij-d-21-00904.
[7]
KNOTT J D, OLA O, DE MICHIELI L, et al. Major adverse cardiovascular events after diagnosis of myocardial injury and types 1 and 2 myocardial infarction[J]. Eur Heart J Acute Cardiovasc Care, 2022, 11(7): 546-557. DOI: 10.1093/ehjacc/zuac075">10.1093/ehjacc/zuac075">10.1093/ehjacc/zuac075.
[8]
SCHUSTER A, KUTTY S, PADIYATH A, et al. Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress[J/OL]. J Cardiovasc Magn Reson, 2011, 13(1): 58 [2022-12-15]. https://jcmr-online.biomedcentral.com/articles/10.1186/1532-429X-13-58. DOI: 10.1186/1532-429X-13-58">10.1186/1532-429X-13-58">10.1186/1532-429X-13-58.
[9]
GUGLIELMO M, FUSINI L, MUSCOGIURI G, et al. T1 mapping and cardiac magnetic resonance feature tracking in mitral valve prolapse[J]. Eur Radiol, 2021, 31(2): 1100-1109. DOI: 10.1007/s00330-020-07140-w">10.1007/s00330-020-07140-w">10.1007/s00330-020-07140-w.
[10]
SALERNO M. Feature tracking by CMR: a "double feature"?[J]. JACC Cardiovasc Imaging, 2018, 11(2Pt 1): 206-208. DOI: 10.1016/j.jcmg.2017.01.024">10.1016/j.jcmg.2017.01.024">10.1016/j.jcmg.2017.01.024.
[11]
ALONSO-FERNANDEZ-GATTA M, MARTIN-GARCIA A, DIEZ-CAMPELO M, et al. Magnetic resonance myocardial feature tracking in transfusion-dependent myelodysplastic syndrome[J]. J Cardiovasc Imaging, 2021, 29(4): 331-344. DOI: 10.4250/jcvi.2020.0216">10.4250/jcvi.2020.0216">10.4250/jcvi.2020.0216.
[12]
LANGE T, SCHUSTER A. Quantification of myocardial deformation applying CMR-feature-tracking-all about the left ventricle?[J]. Curr Heart Fail Rep, 2021, 18(4): 225-239. DOI: 10.1007/s11897-021-00515-0">10.1007/s11897-021-00515-0">10.1007/s11897-021-00515-0.
[13]
SINGLA N, MEHRA S, GARGA U C. Diagnostic role of cardiovascular magnetic resonance imaging in dilated cardiomyopathy[J]. Indian J Radiol Imaging, 2021, 31(1): 116-123. DOI: 10.1055/s-0041-1730133">10.1055/s-0041-1730133">10.1055/s-0041-1730133.
[14]
KAMMERLANDER A A. Feature tracking by cardiovascular magnetic resonance imaging: the new gold standard for systolic function?[J]. JACC Cardiovasc Imaging, 2020, 13(4): 948-950. DOI: 10.1016/j.jcmg.2019.11.015">10.1016/j.jcmg.2019.11.015">10.1016/j.jcmg.2019.11.015.
[15]
HE J, ZHAO S H, LU M J. Cardiac magnetic resonance feature tracking technique and its progress[J]. Chin J Magn Reson Imaging, 2020, 11(6): 469-473. DOI: 10.12015/issn.1674-8034.2020.06.018">10.12015/issn.1674-8034.2020.06.018">10.12015/issn.1674-8034.2020.06.018.
[16]
ZHANG W B, CHENG J L. Development of MRI of cardiomyopathy in the last 40 years: more precise and intelligent[J]. Chin J Magn Reson Imaging, 2022, 13(12): 1-5, 12. DOI: 10.12015/issn.1674-8034.2022.12.001">10.12015/issn.1674-8034.2022.12.001">10.12015/issn.1674-8034.2022.12.001.
[17]
LANGE T, STIERMAIER T, BACKHAUS S J, et al. Functional and prognostic implications of cardiac magnetic resonance feature tracking-derived remote myocardial strain analyses in patients following acute myocardial infarction[J]. Clin Res Cardiol, 2021, 110(2): 270-280. DOI: 10.1007/s00392-020-01747-1">10.1007/s00392-020-01747-1">10.1007/s00392-020-01747-1.
[18]
REINDL M, TILLER C, HOLZKNECHT M, et al. Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial infarction[J/OL]. Circ Cardiovasc Imaging, 2019, 12(11): e009404 [2022-09-26]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.119.009404?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1161/CIRCIMAGING.119.009404.
[19]
GAN H B, GAO D S, ZUO Z. The value of cardiac magnetic resonance feature tracing in evaluating cardiac function[J]. Adv Cardiovasc Dis, 2022, 43(4): 326-330. DOI: 10.16806/j.cnki.issn.1004-3934.2022.04.010">10.16806/j.cnki.issn.1004-3934.2022.04.010">10.16806/j.cnki.issn.1004-3934.2022.04.010.
[20]
THYGESEN K, ALPERT J S, JAFFE A S, et al. Fourth universal definition of myocardial infarction (2018)[J]. Eur Heart J, 2019, 40(3): 237-269. DOI: 10.1093/eurheartj/ehy462">10.1093/eurheartj/ehy462">10.1093/eurheartj/ehy462.
[21]
MANGION K, BURKE N M M, MCCOMB C, et al. Feature-tracking myocardial strain in healthy adults- a magnetic resonance study at 3.0 tesla[J/OL]. Sci Rep, 2019, 9(1): 3239 [2022-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397185/. DOI: 10.1038/s41598-019-39807-w">10.1038/s41598-019-39807-w">10.1038/s41598-019-39807-w.
[22]
LIM C, BLASZCZYK E, RIAZY L, et al. Quantification of myocardial strain assessed by cardiovascular magnetic resonance feature tracking in healthy subjects-influence of segmentation and analysis software[J]. Eur Radiol, 2021, 31(6): 3962-3972. DOI: 10.1007/s00330-020-07539-5">10.1007/s00330-020-07539-5">10.1007/s00330-020-07539-5.
[23]
CAVUS E, MUELLERLEILE K, SCHELLERT S, et al. CMR feature tracking strain patterns and their association with circulating cardiac biomarkers in patients with hypertrophic cardiomyopathy[J]. Clin Res Cardiol, 2021, 110(11): 1757-1769. DOI: 10.1007/s00392-021-01848-5">10.1007/s00392-021-01848-5">10.1007/s00392-021-01848-5.
[24]
THOMAS D, LUETKENS J, FARON A, et al. Feature-tracking-based strain analysis - a comparison of tracking algorithms[J/OL]. Pol J Radiol, 2020, 85: e97-e103 [2022-11-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247018/. DOI: 10.5114/pjr.2020.93610">10.5114/pjr.2020.93610">10.5114/pjr.2020.93610.
[25]
ROMANO S, DELL'ATTI D, JUDD R M, et al. Prognostic value of feature-tracking right ventricular longitudinal strain in severe functional tricuspid regurgitation: a multicenter study[J]. JACC Cardiovasc Imaging, 2021, 14(8): 1561-1568. DOI: 10.1016/j.jcmg.2021.02.009">10.1016/j.jcmg.2021.02.009">10.1016/j.jcmg.2021.02.009.
[26]
ZHANG L S, YANG R X, WANG L, et al. Assessment value of peak diastolic strain rate based on CMR-FT imaging in hypertrophic cardiomyopathy with preserved ejection fraction and its relationship with cardiac troponin T[J]. Chin J Magn Reson Imaging, 2022, 13(12): 45-50. DOI: 10.12015/issn.1674-8034.2022.12.008">10.12015/issn.1674-8034.2022.12.008">10.12015/issn.1674-8034.2022.12.008.
[27]
URMENETA ULLOA J, POZO OSINALDE E, RODRÍGUEZ-HERNÁNDEZ J L, et al. Myocardial strain in nonischemic dilated cardiomyopathy with feature tracking. Feasibility and prognostic implications[J]. Rev Esp Cardiol (Engl Ed), 2021, 74(2): 159-166. DOI: 10.1016/j.rec.2019.12.011">10.1016/j.rec.2019.12.011">10.1016/j.rec.2019.12.011.
[28]
ZHOU S L, GONG L G. Application progresses of cardiac magnetic resonance feature tracking technology in hypertrophic cardiomyopathy[J]. Chin J Med Imaging Technol, 2021, 37(3): 458-461. DOI: 10.13929/j.issn.1003-3289.2021.03.035">10.13929/j.issn.1003-3289.2021.03.035">10.13929/j.issn.1003-3289.2021.03.035.
[29]
NEGRI F, MUSER D, DRIUSSI M, et al. Prognostic role of global longitudinal strain by feature tracking in patients with hypertrophic cardiomyopathy: the STRAIN-HCM study[J]. Int J Cardiol, 2021, 345: 61-67. DOI: 10.1016/j.ijcard.2021.10.148">10.1016/j.ijcard.2021.10.148">10.1016/j.ijcard.2021.10.148.
[30]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017">10.1016/j.jcmg.2021.11.017">10.1016/j.jcmg.2021.11.017.
[31]
RANKIN A J, ZHU L K, MANGION K, et al. Global longitudinal strain by feature-tracking cardiovascular magnetic resonance imaging predicts mortality in patients with end-stage kidney disease[J]. Clin Kidney J, 2021, 14(10): 2187-2196. DOI: 10.1093/ckj/sfab020">10.1093/ckj/sfab020">10.1093/ckj/sfab020.
[32]
WEI X T, ZOU J S, HU G W, et al. Evaluation on microvascular obstruction of acute STEMI patients using cardiovascular magnetic resonance feature tracking imaging quantifying left ventricular strain[J]. Chin J Med Imaging Technol, 2020, 36(2): 229-234. DOI: 10.13929/j.issn.1003-3289.2020.02.014">10.13929/j.issn.1003-3289.2020.02.014">10.13929/j.issn.1003-3289.2020.02.014.
[33]
LEINER T, BOGAERT J, FRIEDRICH M G, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2022-10-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649060/. DOI: 10.1186/s12968-020-00682-4.
[34]
LI J C, LI M L, WANG J, et al. Correlating transmural extent of acute myocardial infarction to left ventricular stain by mrifeature tracking[J]. Chin J Interv Cardiol, 2017, 25(12): 664-670. DOI: 10.3969/j.issn.1004-8812.2017.12.002">10.3969/j.issn.1004-8812.2017.12.002">10.3969/j.issn.1004-8812.2017.12.002.
[35]
MORDI I R, SINGH S, RUDD A, et al. Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects[J]. JACC Cardiovasc Imaging, 2018, 11(4): 577-585. DOI: 10.1016/j.jcmg.2017.05.022">10.1016/j.jcmg.2017.05.022">10.1016/j.jcmg.2017.05.022.
[36]
AMZULESCU M S, DE CRAENE M, LANGET H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. DOI: 10.1093/ehjci/jez041">10.1093/ehjci/jez041">10.1093/ehjci/jez041.
[37]
CLAUS P, OMAR A M S, PEDRIZZETTI G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. DOI: 10.1016/j.jcmg.2015.11.001">10.1016/j.jcmg.2015.11.001">10.1016/j.jcmg.2015.11.001.
[38]
KHAN J N, SINGH A, NAZIR S A, et al. Comparison of cardiovascular magnetic resonance feature tracking and tagging for the assessment of left ventricular systolic strain in acute myocardial infarction[J]. Eur J Radiol, 2015, 84(5): 840-848. DOI: 10.1016/j.ejrad.2015.02.002">10.1016/j.ejrad.2015.02.002">10.1016/j.ejrad.2015.02.002.
[39]
EITEL I, STIERMAIER T, LANGE T, et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction[J]. JACC Cardiovasc Imaging, 2018, 11(10): 1433-1444. DOI: 10.1016/j.jcmg.2017.11.034">10.1016/j.jcmg.2017.11.034">10.1016/j.jcmg.2017.11.034.
[40]
POULEUR A C, KNAPPE D, SHAH A M, et al. Relationship between improvement in left ventricular dyssynchrony and contractile function and clinical outcome with cardiac resynchronization therapy: the MADIT-CRT trial[J]. Eur Heart J, 2011, 32(14): 1720-1729. DOI: 10.1093/eurheartj/ehr185">10.1093/eurheartj/ehr185">10.1093/eurheartj/ehr185.

PREV The diagnostic and prognositic value of cardiac magnetic resonance for evaluating dilated cardiomyopathy with ventricular arrhythmia
NEXT Research on the evaluation of the liver function grading for the patients with hepatitis B cirrhosis using T1 mapping based extracellular volume fraction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn