Share:
Share this content in WeChat
X
Original Article
IDEAL-IQ combined with Micro-CT to assess the quantitative correlation of bone marrow fat content and trabecular bone microstructure in rabbit type 1 diabetes
ZHANG Tian  LI Liang  FEI Ziyan  GAO Yufan  WANG Yan  YAN Yuchen  ZHA Yunfei 

Cite this article as: ZHANG T, LI L, FEI Z Y, et al. IDEAL-IQ combined with Micro-CT to assess the quantitative correlation of bone marrow fat content and trabecular bone microstructure in rabbit type 1 diabetes[J]. Chin J Magn Reson Imaging, 2023, 14(5): 145-149, 160. DOI:10.12015/issn.1674-8034.2023.05.025.


[Abstract] Objective To assess the correlation between bone marrow fat content and trabecular microstructure in the lumbar spine of type 1 diabetic rabbits using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence (IDEAL-IQ) in conjunction with micro computed tomography (Micro-CT).Materials and Methods Sixteen male Japanese white rabbits were randomly divided into a diabetes group (n=8) and a control group (n=8), with the diabetes group induced with alloxan. The IDEAL-IQ quantification sequence was used to evaluate the bone marrow fat content in the lumbar spine of the rabbits at 0, 4, 8, 12, and 16 weeks after the induction of diabetes. Micro-CT and histopathological examinations were conducted at 16 weeks to quantitatively evaluate the trabecular microstructure in the lumbar spine of the rabbits. Differences in the lumbar spine IDEAL-IQ fat fraction at different time points were compared using repeated measures analysis of variance. Differences in the fat fraction, Micro-CT trabecular morphometric parameters, and histopathological parameters between the groups at the same time point were compared using independent sample t-tests or Mann-Whitney U tests. The Pearson correlation coefficient was used to evaluate the correlation between bone marrow fat content and trabecular morphometric parameters and histopathological parameters.Results The bone marrow fat content of the diabetes group showed an upward trend over time, and the difference was statistically significant (P<0.05), while there was no significant statistical difference in fat content at each time point in the control group (P>0.05). The fat fraction of the diabetes group was significantly higher than that of the control group at week 16 (59.987±4.859 vs. 51.015±8.469, P<0.05). The diabetes group had lower bone volume, tissue surface, bone surface, bone surface density, trabecular number, but higher trabecular separation than the control group, and the differences were statistically significant (P<0.05). Histopathological results showed that at week 16, compared with the control group, the number of adipocytes in the lumbar vertebral bone marrow of diabetic rabbits increased (32.875±11.051 vs. 71.667±13.125, P<0.01), while the number of trabeculae (11.375±1.506 vs. 4.333±1.211, P<0.01) and the trabecular area (0.927±0.071 vs. 0.312±0.100, P<0.01) decreased significantly. The IDEAL-IQ fat score was positively correlated with histopathological adipocyte count (r=0.539 95% CI: 0.012-0.832), and was moderately positively correlated with trabecular pattern factor, structure model index, and trabecular separation. It was negatively correlated with bone mineral density, total volume, bone volume, bone volume fraction, total surface area, bone surface area, bone surface area to volume ratio, bone surface area to total volume ratio, and trabecular number, showing a mild to moderate negative correlation.Conclusions There is a correlation between the bone marrow adipose tissue content and the microstructural changes in lumbar vertebrae in type 1 diabetes. The multimodal quantitative imaging technique combining IDEAL-IQ and Micro-CT holds promise for providing a comprehensive assessment strategy for the bone marrow microenvironment in type 1 diabetes.
[Keywords] diabetes mellitus;magnetic resonance imaging;IDEAL-IQ;Micro-CT;bone marrow adipose tissue;bone trabecula;bone microstructure;bone marrow microenvironment

ZHANG Tian   LI Liang   FEI Ziyan   GAO Yufan   WANG Yan   YAN Yuchen   ZHA Yunfei*  

Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Corresponding author: Zha YF, E-mail: zhayunfei999@ 126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81871332, 82171895).
Received  2023-01-12
Accepted  2023-04-24
DOI: 10.12015/issn.1674-8034.2023.05.025
Cite this article as: ZHANG T, LI L, FEI Z Y, et al. IDEAL-IQ combined with Micro-CT to assess the quantitative correlation of bone marrow fat content and trabecular bone microstructure in rabbit type 1 diabetes[J]. Chin J Magn Reson Imaging, 2023, 14(5): 145-149, 160. DOI:10.12015/issn.1674-8034.2023.05.025.

[1]
SYED F Z. Type 1 diabetes mellitus[J]. Ann Intern Med, 2022, 175(3): ITC33-ITC48. DOI: 10.7326/AITC202203150">10.7326/AITC202203150">10.7326/AITC202203150.
[2]
CHENG K M, GUO Q, YANG W G, et al. Mapping knowledge landscapes and emerging trends of the links between bone metabolism and diabetes mellitus: a bibliometric analysis from 2000 to 2021[J/OL]. Front Public Health, 2022, 10: 918483 [2023-04-21]. https://www.frontiersin.org/articles/10.3389/fpubh.2022.918483/full. DOI: 10.3389/fpubh.2022.918483">10.3389/fpubh.2022.918483">10.3389/fpubh.2022.918483.
[3]
ZHENG Y W, ROSTAMI HAJI ABADI M, GHAFOURI Z, et al. Bone deficits in children and youth with type 1 diabetes: a systematic review and meta-analysis[J/OL]. Bone, 2022, 163: 116509 [2023-04-21]. https://www.sciencedirect.com/science/article/pii/S8756328222001867. DOI: 10.1016/j.bone.2022.116509">10.1016/j.bone.2022.116509">10.1016/j.bone.2022.116509.
[4]
SHEU A, BLIUC D, TRAN T, et al. Fractures in type 2 diabetes confer excess mortality: the Dubbo osteoporosis epidemiology study[J/OL]. Bone, 2022, 159: 116373 [2023-04-21]. https://www.sciencedirect.com/science/article/pii/S8756328222000497?via%3Dihub. DOI: 10.1016/j.bone.2022.116373">10.1016/j.bone.2022.116373">10.1016/j.bone.2022.116373.
[5]
HU L, ZHA Y F, WANG L, et al. Quantitative evaluation of vertebral microvascular permeability and fat fraction in alloxan-induced diabetic rabbits[J]. Radiology, 2018, 287(1): 128-136. DOI: 10.1148/radiol.2017170760">10.1148/radiol.2017170760">10.1148/radiol.2017170760.
[6]
HOFBAUER L C, BUSSE B, EASTELL R, et al. Bone fragility in diabetes: novel concepts and clinical implications[J]. Lancet Diabetes Endocrinol, 2022, 10(3): 207-220. DOI: 10.1016/S2213-8587(21)00347-8">10.1016/S2213-8587(21)00347-8">10.1016/S2213-8587(21)00347-8.
[7]
TEISSIER T, TEMKIN V, POLLAK R D, et al. Crosstalk between senescent bone cells and the bone tissue microenvironment influences bone fragility during chronological age and in diabetes[J/OL]. Front Physiol, 2022, 13: 812157 [2023-04-21]. https://www.frontiersin.org/articles/10.3389/fphys.2022.812157/full. DOI: 10.3389/fphys.2022.812157">10.3389/fphys.2022.812157">10.3389/fphys.2022.812157.
[8]
KAUR J, KHOSLA S, FARR J N. Effects of diabetes on osteocytes[J]. Curr Opin Endocrinol Diabetes Obes, 2022, 29(4): 310-317. DOI: 10.1097/MED.0000000000000733">10.1097/MED.0000000000000733">10.1097/MED.0000000000000733.
[9]
SACHER S E, HUNT H B, LEKKALA S, et al. Distributions of microdamage are altered between trabecular rods and plates in cancellous bone from men with type 2 diabetes mellitus[J]. J Bone Miner Res, 2022, 37(4): 740-752. DOI: 10.1002/jbmr.4509">10.1002/jbmr.4509">10.1002/jbmr.4509.
[10]
WÖLFEL E M, FIEDLER I A K, DRAGOUN KOLIBOVA S, et al. Human tibial cortical bone with high porosity in type 2 diabetes mellitus is accompanied by distinctive bone material properties[J/OL]. Bone, 2022, 165: 116546 [2023-04-21]. https://www.sciencedirect.com/science/article/pii/S875632822200223X. DOI: 10.1016/j.bone.2022.116546.
[11]
YANG Q, LI L, ZHA Y F, et al. Microvascular permeability and texture analysis of the skeletal muscle of diabetic rabbits with critical limb ischaemia based on DCE-MRI[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 783163 [2023-04-21]. https://www.frontiersin.org/articles/10.3389/fendo.2022.783163/full. DOI: 10.3389/fendo.2022.783163.
[12]
BOTOLIN S, MCCABE L R. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice[J]. Endocrinology, 2007, 148(1): 198-205. DOI: 10.1210/en.2006-1006.
[13]
MARTIN L M, MCCABE L R. Type I diabetic bone phenotype is location but not gender dependent[J]. Histochem Cell Biol, 2007, 128(2): 125-133. DOI: 10.1007/s00418-007-0308-4.
[14]
ABDALRAHAMAN N, MCCOMB C, FOSTER J E, et al. Deficits in trabecular bone microarchitecture in young women with type 1 diabetes mellitus[J]. J Bone Miner Res, 2015, 30(8): 1386-1393. DOI: 10.1002/jbmr.2465.
[15]
SUCHACKI K J, TAVARES A A S, MATTIUCCI D, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis[J/OL]. Nat Commun, 2020, 11(1): 3097 [2023-04-21]. https://www.nature.com/articles/s41467-020-16878-2. DOI: 10.1038/s41467-020-16878-2.
[16]
LI J, LU L Y, LIU Y, et al. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events[J]. J Mol Med (Berl), 2022, 100(2): 167-183. DOI: 10.1007/s00109-021-02164-1.
[17]
APARISI GÓMEZ M P, AYUSO BENAVENT C, SIMONI P, et al. Fat and bone: the multiperspective analysis of a close relationship[J]. Quant Imaging Med Surg, 2020, 10(8): 1614-1635. DOI: 10.21037/qims.2020.01.11.
[18]
BRAVENBOER N, BREDELLA M A, CHAUVEAU C, et al. Standardised nomenclature, abbreviations, and units for the study of bone marrow adiposity: report of the nomenclature working group of the international bone marrow adiposity society[J/OL]. Front Endocrinol (Lausanne), 2020, 10: 923 [2023-04-21]. https://www.frontiersin.org/articles/10.3389/fendo.2019.00923/full. DOI: 10.3389/fendo.2019.00923.
[19]
PACHÓN-PEÑA G, BREDELLA M A. Bone marrow adipose tissue in metabolic health[J]. Trends Endocrinol Metab, 2022, 33(6): 401-408. DOI: 10.1016/j.tem.2022.03.003.
[20]
TENCEROVA M, FERENCAKOVA M, KASSEM M. Bone marrow adipose tissue: role in bone remodeling and energy metabolism[J/OL]. Best Pract Res Clin Endocrinol Metab, 2021, 35(4): 101545 [2023-04-21]. https://www.sciencedirect.com/science/article/pii/S1521690X21000622?via%3Dihub. DOI: 10.1016/j.beem.2021.101545.
[21]
WALLE M, WHITTIER D E, FROST M, et al. Meta-analysis of diabetes mellitus-associated differences in bone structure assessed by high-resolution peripheral quantitative computed tomography[J]. Curr Osteoporos Rep, 2022, 20(6): 398-409. DOI: 10.1007/s11914-022-00755-6.
[22]
ZEITOUN D, CALIAPEROUMAL G, BENSIDHOUM M, et al. Microcomputed tomography of the femur of diabetic rats: alterations of trabecular and cortical bone microarchitecture and vasculature-a feasibility study[J/OL]. Eur Radiol Exp, 2019, 3(1): 17 [2023-04-21]. https://eurradiolexp.springeropen.com/articles/10.1186/s41747-019-0094-5. DOI: 10.1186/s41747-019-0094-5.
[23]
VILACA T, PAGGIOSI M, WALSH J S, et al. The effects of type 1 diabetes and diabetic peripheral neuropathy on the musculoskeletal system: a case-control study[J]. J Bone Miner Res, 2021, 36(6): 1048-1059. DOI: 10.1002/jbmr.4271.
[24]
AKHTER M P, RECKER R R. High resolution imaging in bone tissue research-review[J/OL]. Bone, 2021, 143: 115620 [2023-04-21]. https://www.sciencedirect.com/science/article/pii/S8756328220304002. DOI: 10.1016/j.bone.2020.115620.
[25]
NAPOLI N, CONTE C. Bone fragility in type 1 diabetes: new insights and future steps[J]. Lancet Diabetes Endocrinol, 2022, 10(7): 475-476. DOI: 10.1016/S2213-8587(22)00137-1.
[26]
NAPOLI N, CHANDRAN M, PIERROZ D D, et al. Mechanisms of diabetes mellitus-induced bone fragility[J]. Nat Rev Endocrinol, 2017, 13(4): 208-219. DOI: 10.1038/nrendo.2016.153.
[27]
WU B, FU Z Y, WANG X Y, et al. A narrative review of diabetic bone disease: characteristics, pathogenesis, and treatment[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 1052592 [2023-04-21]. https://www.frontiersin.org/articles/10.3389/fendo.2022.1052592/full. DOI: 10.3389/fendo.2022.1052592.
[28]
DAAMOUCH S, EMINI L, RAUNER M, et al. microRNA and diabetic bone disease[J]. Curr Osteoporos Rep, 2022, 20(3): 194-201. DOI: 10.1007/s11914-022-00731-0.
[29]
BRUNETTI G, D'AMATO G, DE SANTIS S, et al. Mechanisms of altered bone remodeling in children with type 1 diabetes[J]. World J Diabetes, 2021, 12(7): 997-1009. DOI: 10.4239/wjd.v12.i7.997.

PREV Comparison of 3D amide proton transfer imaging and intravoxel incoherent motion imaging in the diagnosis of prostate cancer
NEXT Research progress of brain structural and functional magnetic resonance imaging in patients with chronic pruritus disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn