Share:
Share this content in WeChat
X
Review
Research status of hypertrophic cardiomyopathy complicated with atrial fibrillation based on cardiac magnetic resonance imaging technology
WU Jialei  YANG Bin 

Cite this article as: WU J L, YANG B. Research status of hypertrophic cardiomyopathy complicated with atrial fibrillation based on cardiac magnetic resonance imaging technology[J]. Chin J Magn Reson Imaging, 2023, 14(5): 181-185. DOI:10.12015/issn.1674-8034.2023.05.032.


[Abstract] Atrial fibrillation (AF) is often secondary to hypertrophic cardiomyopathy (HCM), which leads to significantly worse clinical ending. It is particularly important to identify the risks of AF and quantification. Cardiac magnetic resonance (CMR) imaging integrates cardiac anatomy and function, evaluates the structure and function of the left atrium and ventricle, and can predict and stratify the risk of AF early. We reviewed the relevant progress of CMR in the structure and function changes of the left atrium and ventricle in HCM complicated with AF, expounds the relevant mechanism of AF in hypertrophic cardiomyopathy, discussed the application value and limitations of various structural and functional parameters in the process of disease occurrence and development, to provide a reliable basis for formulating more accurate diagnosis, treatment and mangement strategies.
[Keywords] cardiomyopathy;hypertrophic;arrhythmia;atrial fibrillation;cardiac magnetic resonance;myocardial strain;prediction

WU Jialei1   YANG Bin2*  

1 School of Clinical Medical, Dali University, Dali 671000, China

2 Department of Medical Imaging, the First People's Hospital of Kunming, Kunming 650051, China

Corresponding author: Yang B, E-mail: yangbinapple@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82160348); China International Medical Foundation (No. Z-2014-07-2101); Cultivating Reserve Talents in Medical Disciplines from the Health Committee of Yunnan Province (No. H-2018008).
Received  2022-12-15
Accepted  2023-04-23
DOI: 10.12015/issn.1674-8034.2023.05.032
Cite this article as: WU J L, YANG B. Research status of hypertrophic cardiomyopathy complicated with atrial fibrillation based on cardiac magnetic resonance imaging technology[J]. Chin J Magn Reson Imaging, 2023, 14(5): 181-185. DOI:10.12015/issn.1674-8034.2023.05.032.

[1]
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J/OL]. Circulation, 2020, 142(25): e558-e631 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/33215931/. DOI: 10.1161/CIR.0000000000000937">10.1161/CIR.0000000000000937">10.1161/CIR.0000000000000937.
[2]
LEE S E, PARK J K, UHM J S, et al. Impact of atrial fibrillation on the clinical course of apical hypertrophic cardiomyopathy[J]. Heart, 2017, 103(19): 1496-1501. DOI: 10.1136/heartjnl-2016-310720">10.1136/heartjnl-2016-310720">10.1136/heartjnl-2016-310720.
[3]
ROWIN E J, HAUSVATER A, LINK M S, et al. Clinical profile and consequences of atrial fibrillation in hypertrophic cardiomyopathy[J]. Circulation, 2017, 136(25): 2420-2436. DOI: 10.1161/CIRCULATIONAHA.117.029267">10.1161/CIRCULATIONAHA.117.029267">10.1161/CIRCULATIONAHA.117.029267.
[4]
TIAN T, WANG Y L, SUN K, et al. Clinical profile and prognostic significance of atrial fibrillation in hypertrophic cardiomyopathy[J]. Cardiology, 2013, 126(4): 258-264. DOI: 10.1159/000354953">10.1159/000354953">10.1159/000354953.
[5]
CORICA B, ROMITI G F, RAPARELLI V, et al. Epidemiology of cerebral microbleeds and risk of adverse outcomes in atrial fibrillation: a systematic review and meta-analysis[J]. Europace, 2022, 24(9): 1395-1403. DOI: 10.1093/europace/euac028">10.1093/europace/euac028">10.1093/europace/euac028.
[6]
MARSTRAND P, HAN L, DAY S M, et al. Hypertrophic cardiomyopathy with left ventricular systolic dysfunction: insights from the SHaRe registry[J]. Circulation, 2020, 141(17): 1371-1383. DOI: 10.1161/CIRCULATIONAHA.119.044366">10.1161/CIRCULATIONAHA.119.044366">10.1161/CIRCULATIONAHA.119.044366.
[7]
GARG L, GUPTA M, SABZWARI S R A, et al. Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical impact, and management[J]. Heart Fail Rev, 2019, 24(2): 189-197. DOI: 10.1007/s10741-018-9752-6">10.1007/s10741-018-9752-6">10.1007/s10741-018-9752-6.
[8]
LAN F, LEE A S, LIANG P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(1): 101-113. DOI: 10.1016/j.stem.2012.10.010">10.1016/j.stem.2012.10.010">10.1016/j.stem.2012.10.010.
[9]
ORENES-PIÑERO E, HERNÁNDEZ-ROMERO D, ROMERO-ANIORTE A I, et al. Prognostic value of two polymorphisms in non-sarcomeric genes for the development of atrial fibrillation in patients with hypertrophic cardiomyopathy[J]. QJM, 2014, 107(8): 613-621. DOI: 10.1093/qjmed/hcu046">10.1093/qjmed/hcu046">10.1093/qjmed/hcu046.
[10]
MARON B J, HAAS T S, MARON M S, et al. Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance[J]. Am J Cardiol, 2014, 113(8): 1394-1400. DOI: 10.1016/j.amjcard.2013.12.045">10.1016/j.amjcard.2013.12.045">10.1016/j.amjcard.2013.12.045.
[11]
XU H B, WANG J, YUAN J S, et al. Implication of apnea-hypopnea index, a measure of obstructive sleep apnea severity, for atrial fibrillation in patients with hypertrophic cardiomyopathy[J/OL]. J Am Heart Assoc, 2020, 9(8): e015013 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/32297565/. DOI: 10.1161/JAHA.119.015013">10.1161/JAHA.119.015013">10.1161/JAHA.119.015013.
[12]
HABIBI M, LIMA J A, KHURRAM I M, et al. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: cardiac magnetic resonance study[J]. Circ Cardiovasc Imaging, 2015, 8(2): e002769. DOI: 10.1161/CIRCIMAGING.114.002769">10.1161/CIRCIMAGING.114.002769">10.1161/CIRCIMAGING.114.002769.
[13]
DI DONNA P, OLIVOTTO I, DELCRÈ S D, et al. Efficacy of catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: impact of age, atrial remodelling, and disease progression[J]. Europace, 2010, 12(3): 347-355. DOI: 10.1093/europace/euq013">10.1093/europace/euq013">10.1093/europace/euq013.
[14]
PROVIDENCIA R, ELLIOTT P, PATEL K, et al. Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: a systematic review and meta-analysis[J]. Heart, 2016, 102(19): 1533-1543. DOI: 10.1136/heartjnl-2016-309406">10.1136/heartjnl-2016-309406">10.1136/heartjnl-2016-309406.
[15]
AGUIAR ROSA S, THOMAS B, FIARRESGA A, et al. The impact of ischemia assessed by magnetic resonance on functional, arrhythmic, and imaging features of hypertrophic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 761860 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34977179/. DOI: 10.3389/fcvm.2021.761860">10.3389/fcvm.2021.761860">10.3389/fcvm.2021.761860.
[16]
CAPTUR G, MANISTY C H, RAMAN B, et al. Maximal wall thickness measurement in hypertrophic cardiomyopathy: biomarker variability and its impact on clinical care[J]. JACC Cardiovasc Imaging, 2021, 14(11): 2123-2134. DOI: 10.1016/j.jcmg.2021.03.032">10.1016/j.jcmg.2021.03.032">10.1016/j.jcmg.2021.03.032.
[17]
AUGUSTO J B, DAVIES R H, BHUVA A N, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance[J/OL]. Lancet Digit Health, 2021, 3(1): e20-e28 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/33735065/. DOI: 10.1016/S2589-7500(20)30267-3">10.1016/S2589-7500(20)30267-3">10.1016/S2589-7500(20)30267-3.
[18]
XU J, ZHUANG B Y, SIRAJUDDIN A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651">10.1148/radiol.2019190651">10.1148/radiol.2019190651.
[19]
RAPHAEL C E, LIEW A C, MITCHELL F, et al. Predictors and mechanisms of atrial fibrillation in patients with hypertrophic cardiomyopathy[J]. Am J Cardiol, 2020, 136: 140-148. DOI: 10.1016/j.amjcard.2020.09.006">10.1016/j.amjcard.2020.09.006">10.1016/j.amjcard.2020.09.006.
[20]
COCHET H, MORLON L, VERGÉ M P, et al. Predictors of future onset of atrial fibrillation in hypertrophic cardiomyopathy[J]. Arch Cardiovasc Dis, 2018, 111(10): 591-600. DOI: 10.1016/j.acvd.2018.03.007">10.1016/j.acvd.2018.03.007">10.1016/j.acvd.2018.03.007.
[21]
HOHNECK A, OVERHOFF D, DOESCH C, et al. Extent of late gadolinium enhancement predicts thromboembolic events in patients with hypertrophic cardiomyopathy[J]. Circ J, 2020, 84(5): 754-762. DOI: 10.1253/circj.cj-19-0936">10.1253/circj.cj-19-0936">10.1253/circj.cj-19-0936.
[22]
PAPAVASSILIU T, GERMANS T, FLÜCHTER S, et al. CMR findings in patients with hypertrophic cardiomyopathy and atrial fibrillation[J/OL].J Cardiovasc Magn Reson, 2009, 11(1): 1-9 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/19740409/. DOI: 10.1186/1532-429X-11-34">10.1186/1532-429X-11-34">10.1186/1532-429X-11-34.
[23]
KIM K J, CHOI H M, YOON Y E, et al. Left atrial mechanical function and global strain in hypertrophic cardiomyopathy[J/OL]. PLoS One, 2016, 11(6): e0157433 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/27336444/. DOI: 10.1371/journal.pone.0157433">10.1371/journal.pone.0157433">10.1371/journal.pone.0157433.
[24]
TIAN H W, CUI J G, YANG C Z, et al. Left ventricular remodeling in hypertrophic cardiomyopathy patients with atrial fibrillation[J/OL].BMC Cardiovasc Disord, 2018, 18(1): 1-6 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/30390664/. DOI: 10.1186/s12872-018-0945-7">10.1186/s12872-018-0945-7">10.1186/s12872-018-0945-7.
[25]
FAHMY A S, NEISIUS U, CHAN R H, et al. Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: a multicenter multivendor study[J]. Radiology, 2020, 294(1): 52-60. DOI: 10.1148/radiol.2019190737">10.1148/radiol.2019190737">10.1148/radiol.2019190737.
[26]
PONIKOWSKI P, VOORS A A, ANKER S D, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC[J]. Eur Heart J, 2016, 37(27): 2129-2200. DOI: 10.1093/eurheartj/ehw128">10.1093/eurheartj/ehw128">10.1093/eurheartj/ehw128.
[27]
GEBHARD C, BUECHEL R R, STÄHLI B E, et al. Impact of age and sex on left ventricular function determined by coronary computed tomographic angiography: results from the prospective multicentre CONFIRM study[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(9): 990-1000. DOI: 10.1093/ehjci/jew142">10.1093/ehjci/jew142">10.1093/ehjci/jew142.
[28]
STOKKE T M, HASSELBERG N E, SMEDSRUD M K, et al. Geometry as a confounder when assessing ventricular systolic function[J]. J Am Coll Cardiol, 2017, 70(8): 942-954. DOI: 10.1016/j.jacc.2017.06.046">10.1016/j.jacc.2017.06.046">10.1016/j.jacc.2017.06.046.
[29]
TOWER-RADER A, MOHANANEY D, TO A, et al. Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(10): 1930-1942. DOI: 10.1016/j.jcmg.2018.07.016">10.1016/j.jcmg.2018.07.016">10.1016/j.jcmg.2018.07.016.
[30]
DEBONNAIRE P, JOYCE E, HIEMSTRA Y, et al. Left atrial size and function in hypertrophic cardiomyopathy patients and risk of new-onset atrial fibrillation[J/OL]. Circ Arrhythm Electrophysiol, 2017, 10(2): e004052 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/28183843/. DOI: 10.1161/CIRCEP.116.004052">10.1161/CIRCEP.116.004052">10.1161/CIRCEP.116.004052.
[31]
GUTTMANN O P, PAVLOU M, O'MAHONY C, et al. Predictors of atrial fibrillation in hypertrophic cardiomyopathy[J]. Heart, 2017, 103(9): 672-678. DOI: 10.1136/heartjnl-2016-309672">10.1136/heartjnl-2016-309672">10.1136/heartjnl-2016-309672.
[32]
BERTELSEN L, DIEDERICHSEN S Z, HAUGAN K J, et al. Left atrial volume and function assessed by cardiac magnetic resonance imaging are markers of subclinical atrial fibrillation as detected by continuous monitoring[J]. Europace, 2020, 22(5): 724-731. DOI: 10.1093/europace/euaa035">10.1093/europace/euaa035">10.1093/europace/euaa035.
[33]
MARROUCHE N F, WILBER D, HINDRICKS G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation[J/OL]. JAMA, 2014, 311(5): 498 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/24496537/. DOI: 10.1001/jama.2014.3">10.1001/jama.2014.3">10.1001/jama.2014.3.
[34]
LATIF S R, NGUYEN V Q, PETERS D C, et al. Left atrial fibrosis correlates with extent of left ventricular myocardial delayed enhancement and left ventricular strain in hypertrophic cardiomyopathy[J].Int J Cardiovasc Imaging, 2019, 35(7): 1309-1318. DOI: 10.1007/s10554-019-01551-7">10.1007/s10554-019-01551-7">10.1007/s10554-019-01551-7.
[35]
SANJAY, SIVALOKANATHAN, MBBS, et al. Hypertrophic cardiomyopathy patients with paroxysmal atrial fibrillation have a high burden of left atrial fibrosis by cardiac magnetic resonance imaging[J]. JACC Clin Electrophysiol, 2019, 5(3): 364-375. DOI: 10.1016/j.jacep.2018.10.016">10.1016/j.jacep.2018.10.016">10.1016/j.jacep.2018.10.016.
[36]
SUFFEE N, MOORE-MORRIS T, JAGLA B, et al. Reactivation of the epicardium at the origin of myocardial fibro-fatty infiltration during the atrial cardiomyopathy[J]. Circ Res, 2020, 126(10): 1330-1342. DOI: 10.1161/CIRCRESAHA.119.316251">10.1161/CIRCRESAHA.119.316251">10.1161/CIRCRESAHA.119.316251.
[37]
NALLIAH C J, BELL J R, RAAIJMAKERS A J A, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality[J]. J Am Coll Cardiol, 2020, 76(10): 1197-1211. DOI: 10.1016/j.jacc.2020.07.017">10.1016/j.jacc.2020.07.017">10.1016/j.jacc.2020.07.017.
[38]
ZHOU Y, YU M, CUI J G, et al. The predictive value of epicardial adipose tissue volume assessed by cardiac magnetic resonance for atrial fibrillation in patients with hypertrophic obstructive cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(4): 1383-1393. DOI: 10.1007/s10554-020-02092-0">10.1007/s10554-020-02092-0">10.1007/s10554-020-02092-0.
[39]
MUNOZ C, BUSTIN A, NEJI R, et al. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 53 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/32684167/. DOI: 10.1186/s12968-020-00649-5">10.1186/s12968-020-00649-5">10.1186/s12968-020-00649-5.
[40]
SKODA I, HENNINGSSON M, CARLHALL C. Simultaneous visualization of left atrial fibrosis and epicardial adipose tissue using 3D Dixon late gadolinium enhancement cardiovascular magnetic resonance[J/OL]. Eur Heart J Cardiovasc Imaging, 2021, 22(Supplement_1): jeaa356.370 [2022-12-14]. https://academic.oup.com/ehjcimaging/article/22/Supplement_1/jeaa356.370/6131200?login=true. DOI: 10.1093/ehjci/jeaa356.370">10.1093/ehjci/jeaa356.370">10.1093/ehjci/jeaa356.370.
[41]
HENNINGSSON M, CARLHÄLL C J. Inflow artifact reduction using an adaptive flip-angle navigator restore pulse for late gadolinium enhancement of the left atrium[J]. Magn Reson Med, 2020, 84(6): 3308-3315. DOI: 10.1002/mrm.28334">10.1002/mrm.28334">10.1002/mrm.28334.
[42]
DAUDÉ P, ANCEL P, CONFORT GOUNY S, et al. Deep-learning segmentation of epicardial adipose tissue using four-chamber cardiac magnetic resonance imaging[J/OL]. Diagnostics, 2022, 12(1): 126 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/35054297/. DOI: 10.3390/diagnostics12010126.
[43]
ESSAYAGH B, RESSEGUIER N, MICHEL N, et al. Left atrial dysfunction as marker of poor outcome in patients with hypertrophic cardiomyopathy[J]. Arch Cardiovasc Dis, 2021, 114(2): 96-104. DOI: 10.1016/j.acvd.2020.06.004">10.1016/j.acvd.2020.06.004">10.1016/j.acvd.2020.06.004.
[44]
ZHOU D, YANG W J, YANG Y X, et al. Left atrial dysfunction may precede left atrial enlargement and abnormal left ventricular longitudinal function: a cardiac MR feature tracking study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 99 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/35282817/. DOI: 10.1186/s12872-022-02532-w">10.1186/s12872-022-02532-w">10.1186/s12872-022-02532-w.
[45]
RAMAN B, SMILLIE R W, MAHMOD M, et al. Incremental value of left atrial booster and reservoir strain in predicting atrial fibrillation in patients with hypertrophic cardiomyopathy: a cardiovascular magnetic resonance study[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 109 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34635131/. DOI: 10.1186/s12968-021-00793-6.
[46]
YANG Y X, YIN G, JIANG Y, et al. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 1 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/31898543/. DOI: 10.1186/s12968-019-0589-5">10.1186/s12968-019-0589-5">10.1186/s12968-019-0589-5.
[47]
SINGH A, ADDETIA K, MAFFESSANTI F, et al. LA strain for categorization of LVDiastolicDysfunction[J]. JACC Cardiovasc Imaging, 2017, 10(7): 735-743. DOI: 10.1016/j.jcmg.2016.08.014">10.1016/j.jcmg.2016.08.014">10.1016/j.jcmg.2016.08.014.
[48]
FRYDAS A, MORRIS D A, BELYAVSKIY E, et al. Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure[J]. ESC Heart Fail, 2020, 7(4): 1956-1965. DOI: 10.1002/ehf2.12820">10.1002/ehf2.12820">10.1002/ehf2.12820.
[49]
YAMADA A, HASHIMOTO N, FUJITO H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J/OL]. Sci Rep, 2021, 11: 10941 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34035345/. DOI: 10.1038/s41598-021-90117-6">10.1038/s41598-021-90117-6">10.1038/s41598-021-90117-6.
[50]
BENJAMIN MINA M, NAEEM M, ANEEQ W, et al. Association of left atrial strain by cardiovascular magnetic resonance with recurrence of atrial fibrillation following catheter ablation[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 3 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34980165/. DOI: 10.1186/s12968-021-00831-3">10.1186/s12968-021-00831-3">10.1186/s12968-021-00831-3.
[51]
PEZEL T, VENKATESH B A, DE VASCONCELLOS H D, et al. Left atrioventricular coupling index as a prognostic marker of cardiovascular events: the MESA study[J]. Hypertension, 2021, 78(3): 661-671. DOI: 10.1161/HYPERTENSIONAHA.121.17339">10.1161/HYPERTENSIONAHA.121.17339">10.1161/HYPERTENSIONAHA.121.17339.
[52]
MEUCCI M C, FORTUNI F, GALLOO X, et al. Left atrioventricular coupling index in hypertrophic cardiomyopathy and risk of new-onset atrial fibrillation[J]. Int J Cardiol, 2022, 363: 87-93. DOI: 10.1016/j.ijcard.2022.06.017">10.1016/j.ijcard.2022.06.017">10.1016/j.ijcard.2022.06.017.

PREV Diagnosis and prognosis prediction of glioma based on multimodal MRI radiomics and deep learning
NEXT Research progress of magnetic resonance imaging in predicting biochemical recurrence of prostate cancer after radical prostatectomy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn