Share:
Share this content in WeChat
X
Clinical Article
Bibliometric analysis in neuroimaging of epilepsy research
GAO Lu  MUSTAFA Salimeen Abdelkareem Salimeen  WANG Xiaoyu  ZHANG Na  ZHANG Hua  LI Huanfa  SUN Qinli  ZHANG Weishan  YANG Jian 

Cite this article as: GAO L, MUSTAFA S A S, WANG X Y, et al. Bibliometric analysis in neuroimaging of epilepsy research[J]. Chin J Magn Reson Imaging, 2023, 14(6): 26-31, 44. DOI:10.12015/issn.1674-8034.2023.06.004.


[Abstract] Objective To understand the trends and hotspots in the field of neuroimaging on epilepsy by bibliometric analysis.Materials and Methods Web of Science (WOS) Core Databases were used to search the literatures in neuroimaging of epilepsy between 1900 and 2021. The top 50 articles with highest yearly citation counts were regarded as most highly cited articles. Collaboration analyses in keywords were carried out in neuroimaging on epilepsy between 2012 to 2021.Results The number of yearly citations of the 50 most cited articles in the field of neuroimaging on epilepsy ranged from 47.33 to 11.67. These top cited articles were published between 1900 and 2021. The most productive year was 2010 (8 articles). The top journals was Brain. The top cited articles were from ten countries. The top country was America. For different study purpose, these studies were divided into three aspects: mechanism studies, prognosis studies and diagnosis studies. Temporal lobe epilepsy (TLE) was the most common type. Most studies use single modality. Case control study design was easily found. The hot topics in neuroimaging of epilepsy was the application of MRI in TLE and childhood epilepsy.Conclusions Study using MRI with multi-modality involving mechanism, diagnosis and prognosis of TLE and childhood epilepsy may be the future research hotspot in the field of neuroimaging on epilepsy.
[Keywords] epilepsy;magnetic resonance imaging;neuroimaging;bibliometric analysis;citation frequency

GAO Lu1   MUSTAFA Salimeen Abdelkareem Salimeen1   WANG Xiaoyu1   ZHANG Na1   ZHANG Hua2   LI Huanfa2   SUN Qinli1   ZHANG Weishan1   YANG Jian1*  

1 Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

2 Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

Corresponding author: Yang J, E-mail: yj1118@xjtu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Basic Research Plan of Shaanxi (No. 2022JQ-811); Institutional Foundation of the First Affiliated Hospital of Xi'an Jiaotong University (No. 2021ZYTS-04).
Received  2022-11-01
Accepted  2023-04-28
DOI: 10.12015/issn.1674-8034.2023.06.004
Cite this article as: GAO L, MUSTAFA S A S, WANG X Y, et al. Bibliometric analysis in neuroimaging of epilepsy research[J]. Chin J Magn Reson Imaging, 2023, 14(6): 26-31, 44. DOI:10.12015/issn.1674-8034.2023.06.004.

[1]
SEN A, JETTE N, HUSAIN M, et al. Epilepsy in older people[J]. Lancet, 2020, 395 (10225): 735-748. DOI: 10.1016/j.ncl.2022.03.014.
[2]
OWOLABI L F, ADAMU B, JIBO A M, et al. Prevalence of active epilepsy, lifetime epilepsy prevalence, and burden of epilepsy in Sub-Saharan Africa from meta-analysis of door-to-door population-based surveys[J/OL]. Epilepsy Behav, 2020, 103(Pt A): 106846 [2022-09-20]. https://www.epilepsybehavior.com/retrieve/pii/S1525505019311977. DOI: 10.1016/j.yebeh.2019.106846.
[3]
DEVINSKY O, VEZZANI A, O'BRIEN T J, et al. Epilepsy[J/OL]. Nat Rev Dis Primers, 2018, 4: 18024 [2022-09-20]. https://www.nature.com/articles/nrdp201824. DOI: 10.1038/nrdp.2018.24.
[4]
ROLDAN-VALADEZ E, SALAZAR-RUIZ S Y, IBARRA-CONTRERAS R, et al. Current concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics[J]. Irish J Med Sci, 2019, 188(3): 939-951. DOI: 10.1007/s11845-018-1936-5.
[5]
NINKOV A, FRANK J R, MAGGIO L A. Bibliometrics: Methods for studying academic publishing[J]. Perspect Med Educ, 2022, 11(3): 173-176. DOI: 10.1007/s40037-021-00695-4.
[6]
MONDAL H, MONDAL S. A Brief Review on Article-, Author-, and Journal-Level Scientometric Indices[J]. Indian Dermatol Online J, 2022, 13(5): 578-584. DOI: 10.4103/idoj.idoj_729_21.
[7]
NYANCHOKA L, TUDUR-SMITH C, THU V N, et al. A scoping review describes methods used to identify, prioritize and display gaps in health research[J]. J Clin Epidemiol, 2019, 109: 99-110. DOI: 10.1016/j.jclinepi.2019.01.005.
[8]
TANTRY T P, KARANTH H, SHETTY P K, et al. Self-learning software tools for data analysis in meta-analysis[J]. Korean J Anesthesiol, 2021, 74(5): 459-461. DOI: 10.4097/kja.21080.
[9]
KELLY J C, GLYNN R W, O'BRIAIN D E, et al. The 100 classic papers of orthopaedic surgery: a bibliometric analysis[J]. J Bone Joint Surg Br, 2010, 92(10): 1338-1343. DOI: 10.1302/0301-620X.92B10.24867.
[10]
CALLAHAM M, WEARS R L, WEBER E. Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals[J]. JAMA, 2002, 287 (21): 2847-2850. DOI: 10.1001/jama.287.21.2847.
[11]
LEVITT J M, THELWALL M. Does the higher citation of collaborative research differ from region to region? A case study of economics[J]. Scientometrics, 2010, 85: 171-183. DOI: 10.1007/s11192-010-0197-5.
[12]
BINDER J R, SWANSON S J, HAMMEKE T A, et al. Determination of language dominance using functional MRI: A comparison with the Wada test[J]. Neurology, 1996, 46(4): 978-984. DOI: 10.1212/wnl.46.4.978.
[13]
SPRINGER J A, BINDER J R, HAMMEKE T A, et al. Language dominance in neurologically normal and epilepsy subjects-A functional MRI study[J]. Brain, 1999, 122(Pt 11): 2033-2046. DOI: 10.1093/brain/122.11.2033.
[14]
CASCINO G D, JACK C R, PARISI J E, et al. Magnetic-resonance imaging-based volume studies in temporal-lobe epilepsy-pathological correlations[J]. Ann Neurol, 1991, 30(1): 31-36. DOI: 10.1002/ana.410300107.
[15]
JACK C R, SHARBROUGH F W, TWOMEY C K, et al. Temporal-lobe seizures - lateralization with MR volume measurements of the hippocampal-formation[J]. Radiology, 1990, 175(2): 423-429. DOI: 10.1148/radiology.175.2.2183282.
[16]
DESMOND J E, SUM J M, WAGNER A D, et al. Functional MRI measurement of language lateralization in Wada-tested patients[J]. Brain, 1995, 118 (Pt 6): 1411-1419. DOI: 10.1093/brain/118.6.1411.
[17]
CENDES F, ANDERMANN F, GLOOR P, et al. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy[J]. Neurology, 1993, 43(4): 719-725. DOI: 10.1212/wnl.43.4.719.
[18]
LENCZ T, MCCARTHY G, BRONEN R A, et al. Quantitative magnetic resonance imaging in temporal lobe epilepsy relationship to neuropathology and neuropsychological function[J]. Ann Neurol, 1992, 31(6): 629-637. DOI: 10.1002/ana.410310610.
[19]
CENDES F, ANDERMANN F, DUBEAU F, et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study[J]. Neurology, 1993, 43(6): 1083-1087. DOI: 10.1371/journal.pone.0008525.
[20]
LIAO W, ZHANG Z, PAN Z, et al. Altered Functional Connectivity and Small-World in Mesial Temporal Lobe Epilepsy[J/OL]. PLoS One, 2010, 5(1): e8525 [2022-09-20]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008525. DOI: 10.1371/journal.pone.0008525.
[21]
O'BRIEN T J, SO E L, MULLAN B P, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus[J]. Neurology, 1998, 50(2): 445-454. DOI: 10.1212/wnl.50.2.445.
[22]
ZHANG Z, LIAO W, CHEN H, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy[J]. Brain, 2011, 134(Pt 10): 2912-2928. DOI: 10.1093/brain/awr223.
[23]
BERNASCONI N, BERNASCONI A, CARAMANOS Z, et al. Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region[J]. Brain, 2003, 126(Pt 2): 462-469. DOI: 10.1093/brain/awg034.
[24]
LEHÉRICY S, COHEN L, BAZIN B, et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test[J]. Neurology, 2000, 54(8): 1625-1633. DOI: 10.1212/wnl.54.8.1625.
[25]
WOERMANN F G, JOKEIT H, LUERDING R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy[J]. Neurology, 2003, 61(5): 699-701. DOI: 10.121201.wnl.0000078815.03224.57.
[26]
AGHAKHANI Y, BAGSHAW A P, BÉNAR C G, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy[J]. Brain, 2004, 127(Pt 5): 1127-1144. DOI: 10.1093/brain/awh136.
[27]
BETTUS G, GUEDJ E, JOYEUX F, et al. Decreased Basal fMRI Functional Connectivity in Epileptogenic Networks and Contralateral Compensatory Mechanisms[J]. Hum Brain Mapp, 2009, 30(5): 1580-1591. DOI: 10.1002/hbm.20625.
[28]
ADCOCK J E, WISE R G, OXBURY J M, et al. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy[J]. Neuroimage, 2003, 18(2): 423-438. DOI: 10.1016/s1053-8119(02)00013-7.
[29]
ERIKSSON S H, RUGG-GUNN F J, SYMMS M R, et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development[J]. Brain, 2001, 124(Pt 3): 617-626. DOI: 10.1093/brain/124.3.617.
[30]
BRODBECK V, SPINELLI L, LASCANO A M, et al. Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients[J]. Brain, 2011, 134(Pt 10): 2887-2897. DOI: 10.1093/brain/awr243.
[31]
WAITES A B, BRIELLMANN R S, SALING M M, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy[J]. Ann Neurol, 2006, 59(2): 335-343. DOI: 10.1002/ana.20733.
[32]
Bernasconi N, Duchesne S, Janke A, et al. Whole-brain voxel-based statistical analysis of gray alter and white matter in temporal lobe epilepsy[J]. Neuroimage, 2004, 23(2): 717-723. DOI: 10.1016/j.neuroimage.2004.06.015.
[33]
Szabo K, Poepel A, Pohlmann-Eden B, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus[J]. Brain, 2005, 128(Pt 6): 1369-1376. DOI: 10.1093/brain/awh454.
[34]
BLUMENFELD H, MCNALLY K A, VANDERHILL S D, et al. Positive and negative network correlations in temporal lobe epilepsy[J]. Cereb Cortex, 2004, 14(8): 892-902. DOI: 10.1093/cercor/bhh048.
[35]
LIAO W, ZHANG Z Q, PAN Z Y, et al. Default Mode Network Abnormalities in Mesial Temporal Lobe Epilepsy: A Study Combining fMRI and DTI[J]. Hum Brain Mapp, 2011, 32(6): 883-895. DOI: 10.1002/hbm.21076.
[36]
FOCKE N K, YOGARAJAH M, BONELLI S B, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis[J]. Neuroimage, 2008, 40(2): 728-737. DOI: 10.1016/j.neuroimage.2007.12.031.
[37]
CONCHA L, GROSS D W, WHEATLEY B M, et al. Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients[J]. Neuroimage, 2006, 32(3): 1090-1099. DOI: 10.1016/j.neuroimage.2006.04.187.
[38]
CARNE R P, O'BRIEN T J, KILPATRICK C J, et al. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome[J]. Brain, 2004, 127(Pt 10): 2276-2285. DOI: 10.1093/brain/awh257.
[39]
SALEK-HADDADI A, DIEHL B, HAMANDI K, et al. Hemodynarnic correlates of epileptiform discharges: An EEG-fMRI study of 63 patients with focal epilepsy[J]. Brain Res, 2006, 1088(1): 148-166. DOI: 10.1016/j.brainres.2006.02.098.
[40]
HAMANDI K, SALEK-HADDADI A, LAUFS H, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies[J]. Neuroimage, 2006, 31(4): 1700-1710. DOI: 10.1016/j.neuroimage.2006.02.016.
[41]
CONCHA L, BEAULIEU C, GROSS D W. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy[J]. Ann Neurol, 2005, 57(2): 188-196. DOI: 10.1002/ana.20334.
[42]
MCDONALD C R, AHMADI M E, HAGLER D J, et al. Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy[J]. Neurology, 2008, 71(23): 1869-1876. DOI: 10.1212/01.wnl.0000327824.05348.3b.
[43]
BAI X X, VESTAL M, BERMAN R, et al. Dynamic Time Course of Typical Childhood Absence Seizures: EEG, Behavior, and Functional Magnetic Resonance Imaging[J]. J Neurosci, 2010, 30(17): 5884-5893. DOI: 10.1523/JNEUROSCI.5101-09.2010.
[44]
HERMANN B, JONES J, DABBS K, et al. The frequency, complications and aetiology of ADHD in new onset paediatric epilepsy[J]. Brain, 2007, 130(Pt 12): 3135-3148. DOI: 10.1093/brain/awm227.
[45]
PITTAU F, GROVA C, MOELLER F, et al. Patterns of altered functional connectivity in mesial temporal lobe epilepsy[J]. Epilepsia, 2012, 53(6): 1013-1023. DOI: 10.1111/j.1528-1167.2012.03464.x.
[46]
LUO C, Li Q F, LAI Y X, et al. Altered Functional Connectivity in Default Mode Network in Absence[J]. Hum Brain Mapp, 2011, 32(3): 438-449. DOI: 10.1002/hbm.21034.
[47]
HERMANN B, JONES J, SHETH R, et al. Children with new-onset epilepsy: neuropsychological status and brain structure[J]. Brain, 2006, 129(Pt 10): 2609-2619. DOI: 10.1093/brain/awl196.
[48]
BONELLI S B, POWELL R H, YOGARAJAH M, et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection[J]. Brain, 2010, 133(Pt 4): 1186-1199. DOI: 10.1093/brain/awq006.
[49]
ZHANG Z Q, LU G M, ZHONG Y, et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy[J]. Brain Res, 2010, 1323: 152-160. DOI: 10.1016/j.brainres.2010.01.042.
[50]
CONCHA L, LIVY D J, BEAULIEU C, et al. In Vivo Diffusion Tensor Imaging and Histopathology of the Fimbria-Fornix in Temporal Lobe Epilepsy[J]. J Neurosci, 2010, 30(3): 996-1002. DOI: 10.1523/JNEUROSCI.1619-09.2010.
[51]
KNOWLTON R C, ELGAVISH R A, BARTOLUCCI A, et al. Functional imaging: II. Prediction of epilepsy surgery outcome[J]. Ann Neurol, 2008, 64(1): 35-41. DOI: 10.1002/ana.21419.
[52]
GROUILLER F, THORNTON R C, GROENING K, et al. With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging[J]. Brain, 2011, 134(Pt 10): 2867-2886. DOI: 10.1093/brain/awr156.
[53]
MOELLER F, SIEBNER H R, WOLFF S, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy[J]. Epilepsia, 2008, 49(9): 1510-1519. DOI: 10.1111/j.1528-1167.2008.01626.x.
[54]
PEREIRA F R, ALESSIO A, SERCHELI M S, et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI[J/OL]. BMC Neurosci, 2010, 11: 66 [2022-09-20]. https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-11-66. DOI: 10.1186/1471-2202-11-66.
[55]
WHELAN C D, ALTMANN A, BOTÍA J A, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study[J]. Brain, 2018, 141(2): 391-408. DOI: 10.1093/brain/awx341.
[56]
VOLLMAR C, O'MUIRCHEARTAIGH J, BARKER G J, et al. Motor system hypercon- nectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study[J]. Brain, 2011, 134(Pt 6): 1710-1719. DOI: 10.1093/brain/awr098.
[57]
BONILHA L, NESLAND T, MARTZ G U, et al. Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures[J]. J Neurol Neurosur Ps, 2012, 83(9): 903-909. DOI: 10.1136/jnnp-2012-302476.
[58]
BERNHARDT B C, BERNASCONI N, CONCHA L, et al. Cortical thickness analysis in temporal lobe epilepsy reproducibility and relation to outcome[J]. Neurology, 2010, 74(22): 1776-1784. DOI: 10.1212/WNL.0b013e3181e0f80a.
[59]
BESSON P, DINKELACKER V, VALABREGUE R, et al. Structural connectivity differences in left and right temporal lobe epilepsy[J]. Neuroimage, 2014, 100: 135-144. DOI: 10.1016/j.neuro-image.2014.04.071.
[60]
ZHANG Z Q, LU G M, ZHONG Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation Analysis[J]. Hum Brain Mapp, 2010, 31(12): 1851-1861. DOI: 10.1002/hbm.20982.
[61]
O'MUIRCHEARTAIGH J, VOLLMAR C, BARKER G J, et al. Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy[J]. Neurology, 2011, 76(1): 34-40. DOI: 10.1212/WNL.0b013e318203e93d.
[62]
ZHANG J, ZHANG Y, HU L, et al. Global Trends and Performances of Magnetic Resonance Imaging Studies on Acupuncture: A Bibliometric Analysis[J/OL]. Front Neurosci, 2020, 14: 620555 [2022-09-22]. https://www.frontiersin.org/articles/10.3389/fnins.2020.620555/full. DOI: 10.3389/fnins.2020.620555.
[63]
SHAKHATREH L, JANMOHAMED M, Baker A A, et al. Interictal and seizure-onset EEG patterns in malformations of cortical development: A systematic review[J/OL]. Neurobiol Dis, 2022, 174: 105863 [2022-09-22]. https://linkinghub.elsevier.com/retrieve/pii/S0969-9961(22)00255-8. DOI: 10.1016/j.nbd.2022.105863.
[64]
BERNASCONI N, BERNASCONI A. Epilepsy: Imaging the epileptic brain--time for new standards[J]. Nat Rev Neurol, 2014, 10(3): 133-134. DOI: 10.1038/nrneurol.2013.280.
[65]
CÁRDENAS-RODRÍGUEZ N, CARMONA-APARICIO L, PÉREZ-LOZANO D L, et al. Genetic variations associated with pharmacoresistant epilepsy[J]. Mol Med Rep, 2020, 21(4): 1685-1701. DOI: 10.3892/mmr.2020.10999.
[66]
GOODMAN A M, SZAFLARSKI J P. Recent Advances in Neuroimaging of Epilepsy[J]. Neurotherapeutics, 2021, 18(2): 811-826. DOI: 10.1007/s13311-021-01049-y.
[67]
LOPEZ C, BRAGA P. Clinico-electroencephalographic variants in pharmacoresistant mesial temporal lobe epilepsy[J]. Rev Neurol, 2019, 69(1): 18-26. DOI: 10.33588/rn.6901.2018328.
[68]
UNAL Y, KARA M, GENC F, et a1. The methylation status of NKCC 1 and KCC2 in the patients with refractory temporal lobe epilepsy[J]. Ideggyogy Szemle, 2019, 72(5-6): 181-186. DOI: 10.18071/isz.72.0181.
[69]
MARTINEZ B, PEPLOW P V. MicroRNAs as potential biomarkers in temporal lobe epilepsy and mesial temporal lobe epilepsy[J]. Neural Regen Res, 2023, 18(4): 716-726. DOI: 10.4103/1673-5374.354510.
[70]
BERNHARDT B C, FADAIE F, LIU M, et al. Temporal lobe epilepsy: Hippocampal pathology modulates connectome topology and controllability[J/OL]. Neurology, 2019, 92(19): e2209-e2220 [2022-09-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703109. DOI: 10.1212/WNL.0000000000007447.
[71]
VINTI V, DELL'ISOLA G B, TASCINI G, et al. Temporal Lobe Epilepsy and Psychiatric Comorbidity[J/OL]. Front Neurol, 2021, 12: 775781 [2022-09-22]. https://www.frontiersin.org/articles/10.3389/fneur.2021.775781/full. DOI: 10.3389/fneur.2021.775781.
[72]
ELVERMAN K H, RESCH Z J, QUASNEY E E, et al. Temporal lobe epilepsy is associated with distinct cognitive phenotypes[J]. Epilepsy Behav, 2019, 96: 61-68. DOI: 10.1016/j.yebeh.2019.04.015.
[73]
QIN L, JIANG W, ZHENG J, et al. Alterations Functional Connectivity in Temporal Lobe Epilepsy and Their Relationships With Cognitive Function: A Longitudinal Resting-State fMRI Study[J/OL]. Front Neurol, 2020, 11: 625 [2022-09-25]. https://www.frontiersin.org/articles/10.3389/fneur.2020.00625/full. DOI: 10.3389/fneur.2020.00625.
[74]
GONZALEZ-VIANA E, SEN A, BONNON A, et al. Epilepsies in children, young people, and adults: summary of updated NICE guidance[J/OL]. BMJ, 2022, 378: o1446 [2022-09-25]. https://www.bmj.com/content/378/bmj.o1446.long. DOI: 10.1136/bmj.o1446.
[75]
MALONEY E M, CORCORAN P, COSTELLO D J, et al. Association between social deprivation and incidence of first seizures and epilepsy: A prospective population-based cohort[J]. Epilepsia, 2022, 63(8): 2108-2119. DOI: 10.1111/epi.17313.
[76]
FINE A, WIRRELL E C. Seizures in Children[J]. Pediatr Rev, 2020, 41(7): 321-347. DOI: 10.1542/pir.2019-0134.
[77]
GOGOU M, CROSS J H. Seizures and Epilepsy in Childhood[J]. Continuum (Minneap Minn), 2022, 28(2): 428-456. DOI: 10.1212/CON.0000000000001087.
[78]
LAPALME-REMIS S, NGUYEN D K. Neuroimaging of Epilepsy[J]. Continuum (Minneap Minn), 2022, 28(2): 306-338. DOI: 10.1212/CON.0000000000001080.
[79]
BERNASCONI A, CENDES F, THEODORE W H, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force[J]. Epilepsia, 2019, 60(6): 1054-1068. DOI: 10.1111/epi.15612.
[80]
DENG K, ZOU R, HUANG B, et al. Abnormalities of Cortical Thickness in Pediatric Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis[J]. Curr Med Imaging, 2020, 16(9): 1095-1104. DOI: 10.2174/1573405616666200116161335.
[81]
SOHRABPOUR A, CAI Z, YE S, et al. Noninvasive electromagnetic source imaging of spatiotemporally distributed epileptogenic brain sources[J/OL]. Nat Commun, 2020, 11(1): 1946 [2022-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181775/. DOI: 10.1038/s41467-020-15781-0.
[82]
BALDINI S, COITO A, KORFF C M, et al. Localizing non-epileptiform abnormal brain function in children using high density EEG: Electric Source Imaging of focal slowing[J]. Epilepsy Res, 2020, 159: 106245 [2022-09-25]. https://www.sciencedirect.com/science/article/abs/pii/S0920121119304371?via%3Dihub. DOI: 10.1016/j.eplepsyres.2019.106245.
[83]
BONILHA L, NESLAND T, MARTZ G U, et al. Medial temporal lobe epilepsy is associated with neuronal fifibre loss and paradoxical increase in structural connectivity of limbic structures[J]. J Neurol Neurosurg Psychiatry, 2012, 83(9): 903-909. DOI: 10.1136/jnnp-2012-302476.
[84]
JIANG L W, QIAN R B, FU X M, et al. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study[J]. Epilepsy Behav, 2018, 88: 81-86. DOI: 10.1016/j.yebeh.2018.06.045.
[85]
SINHA N, JOHNSON G W, DAVIS K A, et al. Integrating Network Neuroscience Into Epilepsy Care: Progress, Barriers, and Next Steps[J]. Epilepsy Curr, 2022, 22(5): 272-278. DOI: 10.1177/15357597221101271.
[86]
MASSOT-TARRÚS A, MIRSATTARI S M. Roles of fMRI and Wada tests in the presurgical evaluation of language functions in temporal lobe epilepsy[J/OL]. Front Neurol, 2022, 13: 884730 [2022-09-25]. https://www.frontiersin.org/articles/10.3389/fneur.2022.884730/full. DOI: 10.3389/fneur.2022.884730.

PREV MVPA method study for distinguishing the cognitive level of healthy elderly people based on resting-state fMRI
NEXT MR imaging evaluation of heavy-ion therapy for hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn