Share:
Share this content in WeChat
X
Clinical Article
Brain regional homogeneity alterations in multi-frequency bands in primary dysmenorrhea: A resting-state functional magnetic resonance imaging study
LIU Ni  ZHANG Ya'nan  DAI Na  HUO Jianwei  ZHANG Lei  HUANG Yiran  LIU Junlian 

Cite this article as: LIU N, ZHANG Y N, DAI N, et al. Brain regional homogeneity alterations in multi-frequency bands in primary dysmenorrhea: A resting-state functional magnetic resonance imaging study[J]. Chin J Magn Reson Imaging, 2023, 14(6): 39-44. DOI:10.12015/issn.1674-8034.2023.06.006.


[Abstract] Objective To investigate whether the spontaneous regional neural activity abnormalities in patients with primary dysmenorrhea (PDM) are associated with specific frequency bands using a multifrequency bands regional homogeneity (ReHo) method and to explore whether the alteration of ReHo values is associated with clinical measures.Materials and Methods Thirty-two PDM patients and thirty-six healthy controls (HC) were enrolled in this study and underwent resting-state functional magnetic resonance imaging. The ReHo analyses in conventional frequency band (0.010-0.080 Hz), slow-4 (0.027-0.073 Hz) band and slow-5 (0.010-0.027 Hz) band were conducted. Two-sample t test was used to compare the ReHo values between the two groups, and Pearson correlation analysis was used to explore the relationship between the ReHo values of PDM patients and clinical measures.Results Compared with HC (FEW corrected, voxel P<0.001, cluster P<0.05, two tailed), PDM patients showed increased ReHo values in the right parahippocampus gyrus, temporal pole superior temporal gyrus, basal nucleus and anterior cingutate, and decreased ReHo values in the left middle temporal gyrus, inferior temporal gyrus and insula both in conventional frequency band and slow-4 band, while PDM patients showed increased ReHo values in the right middle frontal gyrus and decreased ReHo values in the left cerebellum 8 region compared with HC in slow-5 band. Correlation analysis showed that COX1 was positively correlated with ReHo values in the left middle temporal gyrus in conventional frequency band in PDM patients.Conclusions The present study revealed frequency-specific ReHo alterations in PDM, among which, the changes in activity in brain regions associated with pain afference, emotion and memory found in the conventional band were roughly consistent with slow-4 band, while slow-5 band may provide additional findings, providing new insights into the neurobiological mechanisms of PDM.
[Keywords] primary dysmenorrhea;resting-state functional magnetic resonance imaging;regional homogeneity;frequency-specific;magnetic resonance imaging

LIU Ni1   ZHANG Ya'nan1   DAI Na1   HUO Jianwei1   ZHANG Lei1   HUANG Yiran2   LIU Junlian1*  

1 Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China

2 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China

Corresponding author: Liu JL, E-mail: 13501192985@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS University-Level Longitudinal Research Development Foundation of Beijing University of Chinese Medicine (No. 2020-ZXFZJJ-035).
Received  2022-12-27
Accepted  2023-05-23
DOI: 10.12015/issn.1674-8034.2023.06.006
Cite this article as: LIU N, ZHANG Y N, DAI N, et al. Brain regional homogeneity alterations in multi-frequency bands in primary dysmenorrhea: A resting-state functional magnetic resonance imaging study[J]. Chin J Magn Reson Imaging, 2023, 14(6): 39-44. DOI:10.12015/issn.1674-8034.2023.06.006.

[1]
HU Z, TANG L, CHEN L, et al. Prevalence and risk factors associated with primary dysmenorrhea among Chinese female university students: a cross-sectional study[J]. J Pediatr Adolesc Gynecol, 2020, 33(1): 15-22. DOI: 10.1016/j.jpag.2019.09.004.
[2]
LOW I, WEI S Y, LEE P S, et al. Neuroimaging studies of primary dysmenorrhea[J]. Adv Exp Med Biol, 2018, 1099: 179-199. DOI: 10.1007/978-981-13-1756-9_16.
[3]
BARCIKOWSKA Z, RAJKOWSKA-LABON E, GRZYBOWSKA M E, et al. Inflammatory markers in dysmenorrhea and therapeutic options[J/OL]. Int J Environ Res Public Health, 2020, 17(4): 1191 [2022-12-23]. https://pubmed.ncbi.nlm.nih.gov/32069859/. DOI: 10.3390/ijerph17041191.
[4]
TU F, HELLMAN K. Primary dysmenorrhea: diagnosis and therapy[J/OL]. Obstet Gynecol, 2021, 137(4): 752 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034604/. DOI: 10.1097/AOG.0000000000004341.
[5]
LIU P, LIU Y F, WANG G L, et al. Changes of functional connectivity of the anterior cingulate cortex in women with primary dysmenorrhea[J]. Brain Imaging Behav, 2018, 12(3): 710-717. DOI: 10.1007/s11682-017-9730-y.
[6]
HAN F, LIU H J, WANG K, et al. Correlation between thalamus-related functional connectivity and serum BDNF levels during the periovulatory phase of primary dysmenorrhea[J/OL]. Front Hum Neurosci, 2019, 13: 333 [2022-12-23]. https://europepmc.org/article/MED/31632254. DOI: 10.3389/fnhum.2019.00333.
[7]
ZHANG Y N, HUANG Y R, LIU J L, et al. Aberrant resting-state cerebral blood flow and its connectivity in primary dysmenorrhea on arterial spin labeling MRI[J]. Magn Reson Imaging, 2020, 73: 84-90. DOI: 10.1016/j.mri.2020.07.012.
[8]
TU C H, LEE Y C, CHEN Y Y, et al. Acupuncture treatment associated with functional connectivity changes in primary dysmenorrhea: a resting state fMRI study[J/OL]. J Clin Med, 2021, 10(20): 4731 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537009/. DOI: 10.3390/jcm10204731.
[9]
ZUO X N, XU T, JIANG L L, et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space[J]. Neuroimage, 2013, 65: 374-386. DOI: 10.1016/j.neuroimage.2012.10.017.
[10]
JIN L M, YANG X J, LIU P, et al. Dynamic abnormalities of spontaneous brain activity in women with primary dysmenorrhea[J]. J Pain Res, 2017, 10: 699-707. DOI: 10.2147/JPR.S121286.
[11]
WU T H, TU C H, CHAO H T, et al. Dynamic changes of functional pain connectome in women with primary dysmenorrhea[J/OL]. Sci Rep, 2016, 6: 24543 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835697/. DOI: 10.1038/srep24543.
[12]
LIU N, LI Y Q, HONG Y Y, et al. Altered brain activities in mesocorticolimbic pathway in primary dysmenorrhea patients of long-term menstrual pain[J/OL]. Front Neurosci, 2023, 17: 1098573 [2022-12-23]. https://pubmed.ncbi.nlm.nih.gov/36793538/. DOI: 10.3389/fnins.2023.1098573.
[13]
BUZSÁKI G, DRAGUHN A. Neuronal oscillations in cortical networks[J]. Science, 2004, 304(5679): 1926-1929. DOI: 10.1126/science.1099745.
[14]
ZUO X N, DI MARTINO A, KELLY C, et al. The oscillating brain: complex and reliable[J]. NeuroImage, 2010, 49(2): 1432-1445. DOI: 10.1016/j.neuroimage.2009.09.037.
[15]
BURNETT M, LEMYRE M. No. 345-primary dysmenorrhea consensus guideline[J]. J Obstet Gynaecol Can, 2017, 39(7): 585-595. DOI: 10.1016/j.jogc.2016.12.023.
[16]
COX D J, MEYER R G. Behavioral treatment parameters with primary dysmenorrhea[J]. J Behav Med, 1978, 1(3): 297-310. DOI: 10.1007/BF00846681.
[17]
YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[18]
SILVA J T DA, SEMINOWICZ D A. Neuroimaging of pain in animal models: a review of recent literature[J/OL]. Pain Rep, 2019, 4(4): e732 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728006/. DOI: 10.1097/PR9.0000000000000732.
[19]
ZHANG Q, YU S Y, WANG Y N, et al. Abnormal reward system network in primary dysmenorrhea[J/OL]. Mol Pain, 2019, 15: 1744806919862096 [2022-12-23]. https://pubmed.ncbi.nlm.nih.gov/31286840/. DOI: 10.1177/1744806919862096.
[20]
GARCIA-LARREA L, PEYRON R. Pain matrices and neuropathic pain matrices: a review[J/OL]. Pain, 2013, 154(Suppl 1): S29-S43 [2022-12-23]. https://pubmed.ncbi.nlm.nih.gov/24021862/. DOI: 10.1016/j.pain.2013.09.001.
[21]
LIU P, LIU Y F, WANG G L, et al. Aberrant default mode network in patients with primary dysmenorrhea: a fMRI study[J]. Brain Imaging Behav, 2017, 11(5): 1479-1485. DOI: 10.1007/s11682-016-9627-1.
[22]
WANG X S, JIANG Y L, LU L, et al. Activation of GIPR exerts analgesic and anxiolytic-like effects in the anterior cingulate cortex of mice[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 887238 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196593/. DOI: 10.3389/fendo.2022.887238.
[23]
WANG Y N, XU J, ZHANG Q, et al. Immediate analgesic effect of acupuncture in patients with primary dysmenorrhea: a fMRI study[J/OL]. Front Neurosci, 2021, 15: 647667 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180846/. DOI: 10.3389/fnins.2021.647667.
[24]
LIU H, HOU H M, LI F F, et al. Structural and functional brain changes in patients with classic trigeminal neuralgia: a combination of voxel-based morphometry and resting-state functional MRI study[J/OL]. Front Neurosci, 2022, 16: 930765 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277055/. DOI: 10.3389/fnins.2022.930765.
[25]
ZHANG P F, JIANG Y L, LIU G Y, et al. Altered brain functional network dynamics in classic trigeminal neuralgia: a resting-state functional magnetic resonance imaging study[J/OL]. J Headache Pain, 2021, 22(1): 147 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903588/. DOI: 10.1186/s10194-021-01354-z.
[26]
BERGER S E, VACHON-PRESSEAU É, ABDULLAH T B, et al. Hippocampal morphology mediates biased memories of chronic pain[J]. Neuroimage, 2018, 166: 86-98. DOI: 10.1016/j.neuroimage.2017.10.030.
[27]
WEI X H, CENTENO M V, REN W J, et al. Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents[J]. Pain, 2021, 162(12): 2865-2880. DOI: 10.1097/j.pain.0000000000002279.
[28]
GUI S G, CHEN R B, ZHONG Y L, et al. Machine learning analysis reveals abnormal static and dynamic low-frequency oscillations indicative of long-term menstrual pain in primary dysmenorrhea patients[J]. J Pain Res, 2021, 14: 3377-3386. DOI: 10.2147/JPR.S332224.
[29]
LIU N, ZHANG Y N, WU J C, et al. An explorative resting-state fMRI study of central mechanism in patients with primary dysmenorrhea during menstrual phase by using the method of degree centrality[J]. Chin J Magn Reson Imaging, 2021, 12(7): 29-33. DOI: 10.12015/issn.1674-8034.2021.07.006.
[30]
LEE P S, LOW I, CHEN Y S, et al. Encoding of menstrual pain experience with theta oscillations in women with primary dysmenorrhea[J/OL]. Sci Rep, 2017, 7(1): 15977 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700160/. DOI: 10.1038/s41598-017-16039-4.
[31]
CHAN H L, LOW I, CHEN L F, et al. A novel beamformer-based imaging of phase-amplitude coupling (BIPAC) unveiling the inter-regional connectivity of emotional prosody processing in women with primary dysmenorrhea[J/OL]. J Neural Eng, 2021, 18(4): 046074 [2022-12-23]. https://pubmed.ncbi.nlm.nih.gov/33691295/. DOI: 10.1088/1741-2552/abed83.
[32]
MEDINA S, BAKAR N A, O'DALY O, et al. Regional cerebral blood flow as predictor of response to occipital nerve block in cluster headache[J/OL]. J Headache Pain, 2021, 22(1): 91 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359299/. DOI: 10.1186/s10194-021-01304-9.
[33]
ZHANG Y N, HUANG Y R, LIU N, et al. Abnormal interhemispheric functional connectivity in patients with primary dysmenorrhea: a resting-state functional MRI study[J]. Quant Imaging Med Surg, 2022, 12(3): 1958-1967. DOI: 10.21037/qims-21-731.
[34]
MAITI B, KOLLER J M, SNYDER A Z, et al. Cognitive correlates of cerebellar resting-state functional connectivity in Parkinson disease[J/OL]. Neurology, 2020, 94(4): e384-e396 [2022-12-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079688/. DOI: 10.1212/WNL.0000000000008754.
[35]
ZHU Y Y, YANG B Y, ZHOU C B, et al. Cortical atrophy is associated with cognitive impairment in Parkinson's disease: a combined analysis of cortical thickness and functional connectivity[J]. Brain Imaging Behav, 2022, 16(6): 2586-2600. DOI: 10.1007/s11682-022-00714-w.
[36]
DIANO M, D'AGATA F, CAUDA F, et al. Cerebellar clustering and functional connectivity during pain processing[J]. Cerebellum, 2016, 15(3): 343-356. DOI: 10.1007/s12311-015-0706-4.
[37]
SILVA K E, ROSNER J, ULLRICH N J, et al. Pain affect disrupted in children with posterior cerebellar tumor resection[J]. Ann Clin Transl Neurol, 2019, 6(2): 344-354. DOI: 10.1002/acn3.709.
[38]
LABRENZ F, SPISÁK T, ERNST T M, et al. Temporal dynamics of fMRI signal changes during conditioned interoceptive pain-related fear and safety acquisition and extinction[J/OL]. Behav Brain Res, 2022, 427: 113868 [2022-12-23]. https://pubmed.ncbi.nlm.nih.gov/35364111/. DOI: 10.1016/j.bbr.2022.113868.
[39]
MEYLAKH N, MARCISZEWSKI K K, DI PIETRO F, et al. Deep in the brain: changes in subcortical function immediately preceding a migraine attack[J]. Hum Brain Mapp, 2018, 39(6): 2651-2663. DOI: 10.1002/hbm.24030.
[40]
YANG L, YAN Y, LI Y X, et al. Frequency-dependent changes in fractional amplitude of low-frequency oscillations in Alzheimer's disease: a resting-state fMRI study[J]. Brain Imaging Behav, 2020, 14(6): 2187-2201. DOI: 10.1007/s11682-019-00169-6.
[41]
DI PIETRO F, LEE B, HENDERSON L A. Altered resting activity patterns and connectivity in individuals with complex regional pain syndrome[J]. Hum Brain Mapp, 2020, 41(13): 3781-3793. DOI: 10.1002/hbm.25087.

PREV MR imaging evaluation of heavy-ion therapy for hepatocellular carcinoma
NEXT Value of radiomics stacking ensemble learning model based on T2WI and CE-T1WI in predicting the efficacy of HIFU ablation of uterine fibroid
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn