Share:
Share this content in WeChat
X
Technical Article
The Value of compressed sensing 3D MRI sagittal T2 weighted imaging-spectral attenuated in-version recovery to display the anterior talofibular ligament
ZHANG Xiaoyan  MA Peiqi  YUAN Yushan  WANG Zhongqiu  PENG Bin  ZHANG Zongxi 

Cite this article as: ZHANG X Y, MA P Q, YUAN Y S, et al. The Value of compressed sensing 3D MRI sagittal T2 weighted imaging-spectral attenuated in-version recovery to display the anterior talofibular ligament[J]. Chin J Magn Reson Imaging, 2023, 14(6): 71-74, 81. DOI:10.12015/issn.1674-8034.2023.06.011.


[Abstract] Objective To investigate the feasibility of using compressed sensing (CS) technology for three-dimensional MRI T2 weighted imaging-spectral attenuated in-version recovery (T2WI-SPAIR) sequence to visualize the anterior talofibular ligament (ATFL) and compare the effects of different acceleration factors on imaging.Materials and Methods Forty volunteers underwent ankle scans on 3.0 T MR, including transverse, coronal and sagittal fat saturation proton density-weighted imaging (fsPDWI) sequences scan of conventional ankle and sagittal T2WI-SPAIR sequence scan of the CS-3D ankle joint, CS-4, CS-6 and CS-8 were set according to different acceleration factors (the compression times were 4 times, 6 times and 8 times respectively) of CS technique. Four sets of conventional, CS-4, CS-6, and CS-8 images were obtained for each volunteer. The image quality was assessed via the subjective and objective analysis to evaluate the display effect of the ATFL.Results The subjective evaluation of image quality by two senior diagnostic radiologist showed a high consistency (k=0.913, P<0.001). Wilcoxon-signed rank sum test was performed by two diagnosticians on subjective scores of images in the CS group and the conventional group, and the results showed: there was no significant difference in image quality scores between groups CS-4 and CS-6 and the conventional group (Z=1.417, 1.414, P=0.155, 0.157), while there was significant difference between group CS-8 and the conventional group (Z=3.771, P<0.001). In the objective evaluation, CS-4 group had the highest signal-to-noise ratio (SNR) in the four groups (P<0.05), while CS-8 group had the lowest SNR in the four groups (P<0.05), there was no significant difference in the contrast-to-noise ratio (CNR) between CS-6 group and conventional group (P=0.950). The scanning time of CS-4 group, CS-6 group and CS-8 group was about 16%, 43% and 58% shorter than that of conventional group, respectively.Conclusions CS technology combined with 3D MRI can be used for ankle joint examination with 3.0 T MRI, which can not only guarantee the image quality, but also effectively reduce the scanning time, display the anatomical structure in multiple aspects, improve the examination experience of patients, and further optimize the MRI scanning scheme of ankle joint.
[Keywords] ankle joint;anterior talofibular ligament;magnetic resonance imaging;compressed sensing;three-dimensional magnetic resonance imaging;image quality

ZHANG Xiaoyan   MA Peiqi*   YUAN Yushan   WANG Zhongqiu   PENG Bin   ZHANG Zongxi  

Medical Imaging Center of Fuyang People's Hospital, Fuyang 236000, China

Corresponding author: Ma PQ, E-mail: mapeiqi18@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Fuyang Self funded Science and Technology Plan Project (No. FK202081049).
Received  2021-11-24
Accepted  2023-06-08
DOI: 10.12015/issn.1674-8034.2023.06.011
Cite this article as: ZHANG X Y, MA P Q, YUAN Y S, et al. The Value of compressed sensing 3D MRI sagittal T2 weighted imaging-spectral attenuated in-version recovery to display the anterior talofibular ligament[J]. Chin J Magn Reson Imaging, 2023, 14(6): 71-74, 81. DOI:10.12015/issn.1674-8034.2023.06.011.

[1]
QIAN Z H, LIU Y, BAI R J, et al. MRI anatomy and injury of the lateral collateral ligaments of ankle[J]. Natl Med J China, 2017, 97(29): 2271-2274. DOI: 10.3760/cma.j.issn.0376-2491.2017.29.008.
[2]
MALLIAROPOULOS N, PAPACOSTAS E, PAPALADA A, et al. Acute lateral ankle sprains in track and field athletes: an expanded classification[J]. Foot Ankle Clin, 2006, 11(3): 497-507. DOI: 10.1016/j.fcl.2006.05.004.
[3]
CAO S X, WANG C, MA X, et al. Reliability and validity of different ankle MRI scanning planes for the anterior talofibular ligament injury diagnosis: a cadaveric study[J/OL]. J Orthop Surg Res, 2019, 14(1): 69 [2021-10-30]. https://josr-online.biomedcentral.com/articles/10.1186/s13018-019-1102-4. DOI: 10.1186/s13018-019-1102-4.
[4]
WU G, WANG X S, ZHANG J. Comparison of magnetic resonance imaging and stress radiography in diagnosing chronic anterior talofibular ligament injury[J]. Chin J Sports Med, 2018, 37(2):110-114. DOI: 10.3969/j.issn.1000-6710.2018.02.003.
[5]
TERAMOTO A, AKATSUKA Y, TAKASHIMA H, et al. 3D MRI evaluation of morphological characteristics of lateral ankle ligaments in injured patients and uninjured controls[J]. J Orthop Sci, 2020, 25(1): 183-187. DOI: 10.1016/j.jos.2019.02.018.
[6]
XU Y, HE L, HAN Y, et al. Evaluation of 3-dimensional magnetic resonance imaging (3D MRI) in diagnosing anterior talofibular ligament injury[J/OL]. Med Sci Monit, 2021, 27: e927920 [2022-04-05]. https://medscimonit.com/abstract/full/idArt/927920. DOI: 10.12659/MSM.927920.
[7]
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
[8]
DELATTRE B M A, BOUDABBOUS S, HANSEN C, et al. Compressed sensing MRI of different organs: ready for clinical daily practice?[J]. Eur Radiol, 2020, 30(1): 308-319. DOI: 10.1007/s00330-019-06319-0.
[9]
GERSING A S, BODDEN J, NEUMANN J, et al. Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing[J]. Eur J Radiol, 2019, 118: 277-284. DOI: 10.1016/j.ejrad.2019.06.006.
[10]
DU X T, ZHANG X D, CHEN Y J, et al. Application of compressed sensing technology in two-dimensional magnetic resonance imaging of the ankle joint[J]. Chin J Tissue Eng Res, 2023, 27(9): 1396-1402. DOI: 10.12015/issn.1674-8034.2020.09.012.
[11]
LIN Q, WANG J J, SUN M H, et al. Clinical application of cardiac magnetic resonance compressed sensing cine imaging[J]. Chin J Med Imaging Technol, 2020, 36(2): 281-286. DOI: 10.13929/j.issn.1003-3289.2020.02.027.
[12]
MA P Q, YUAN Y S, ZHANG Z X, et al. Three dimensional MRI based on compressed sensing technology in diagnosis of meniscal injuries[J]. Chin J Med Imaging Technol, 2020, 36(10): 1533-1536. DOI: 10.13929/j.issn.1003-3289.2020.10.025.
[13]
ZHANG Y, PENG W L, XIAO Y, et al. Rapid 3D breath-hold MR cholangiopancreatography using deep learning-constrained compressed sensing reconstruction[J]. Eur Radiol, 2023, 33(4): 2500-2509. DOI: 10.1007/s00330-022-09227-y.
[14]
CANDÈS E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Comm Pure Appl Math, 2006, 59(8): 1207-1223. DOI: 10.1002/cpa.20124.
[15]
BARON C A, DWORK N, PAULY J M, et al. Rapid compressed sensing reconstruction of 3D non-Cartesian MRI[J]. Magn Reson Med, 2018, 79(5): 2685-2692. DOI: 10.1002/mrm.26928.
[16]
SANDINO C M, CHENG J Y, CHEN F Y, et al. Compressed sensing: from research to clinical practice with deep neural networks[J]. IEEE Signal Process Mag, 2020, 37(1): 111-127. DOI: 10.1109/MSP.2019.2950433.
[17]
YI J, LEE Y H, HAHN S, et al. Fast isotropic volumetric magnetic resonance imaging of the ankle: acceleration of the three-dimensional fast spin echo sequence using compressed sensing combined with parallel imaging[J]. Eur J Radiol, 2019, 112: 52-58. DOI: 10.1016/j.ejrad.2019.01.009.
[18]
SANDERS J W, SONG H, FRANK S J, et al. Parallel imaging compressed sensing for accelerated imaging and improved signal-to-noise ratio in MRI-based postimplant dosimetry of prostate brachytherapy[J]. Brachytherapy, 2018, 17(5): 816-824. DOI: 10.1016/j.brachy.2018.05.003.
[19]
KIDO T, KIDO T, NAKAMURA M, et al. Assessment of left ventricular function and mass on free-breathing compressed sensing real-time cine imaging[J]. Circ J, 2017, 81(10): 1463-1468. DOI: 10.1253/circj.CJ-17-0123.
[20]
ZHUANG Z X, XU X M, CAO X L, et al. Reliability and validity of improved oblique-axial plane magnetic resonance imaging (MRI) for detection of anterior talofibular ligament (ATFL) injuries[J]. China J Mod Med, 2017, 27(8): 90-96. DOI: 10.3969/j.issn.1005-8982.2017.08.019.
[21]
SUN Y, SHEN J K, HAO Y F, et al. Comparative study of MR 3D-SPACE and 3D-Ture FISP sequences in ligament of the ankle joint[J]. J Pract Radiol, 2016, 32(6): 907-910. DOI: 10.3969/j.issn.1002-1671.2016.06.021.
[22]
HE L, XU Y, DUAN D Y, et al. The anterior talofibular ligament: a thin-slice three-dimensional magnetic resonance imaging study[J]. Foot Ankle Surg, 2022, 28(8): 1202-1209. DOI: 10.1016/j.fas.2021.11.011.
[23]
FRITZ B, FRITZ J, SUTTER R. 3D MRI of the ankle: a concise state-of-the-art review[J]. Semin Musculoskelet Radiol, 2021, 25(3): 514-526. DOI: 10.1055/s-0041-1731332.

PREV The visualization of trigeminal nerve and its adjacent vessels using ultra-high field 7 T MRI
NEXT Pathological nipple discharge: A comparative study of galactography and MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn