Share:
Share this content in WeChat
X
Review
Research progress on the application of 4D-ASL in cerebrovascular disease
LIN Xiaoyi  ZHANG Zongli 

Cite this article as: LIN X Y, ZHANG Z L. Research progress on the application of 4D-ASL in cerebrovascular disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 113-118. DOI:10.12015/issn.1674-8034.2023.06.020.


[Abstract] Four dimensional arterial spin labeling (4D-ASL) can achieve whole-brain perfusion imaging, selective single-vessel or whole-body cerebral vascular dynamic imaging in a non-invasive way without exogenous contrast agent, and achieve similar digital subtraction angiography effect, providing the hemodynamics and collateral circulation of cerebrovascular disease (CVD), benefiting patients with gadolinium contrast allergy and renal insufficiency, especially for children and patients with long-term follow-up. 4D-ASL has high temporal and spatial resolution, and has broad application prospects in CVD, which is helpful to analyze the characteristics of disease, such as the display of collateral circulation in arterial stenosis and occlusive disease and moyamoya disease; the measurement of aneurysm body; shunt location of arteriovenous fistula, identification of feeding artery and Borden classification; characteristics and auxiliary treatment of arteriovenous malformations. 4D-ASL is gradually becoming the next generation of non-invasive angiography technology. However, there are few research reports on 4D-ASL, and scholars lack understanding of 4D-ASL. Therefore, this article provides an overview of the imaging principles of 4D-ASL and its application value in CVD, in order to prospect the development and research direction of 4D-ASL. For scholars interested in this technology to reference and further research based on it, accelerating 4D-ASL to become a routine method for CVD vascular imaging examination.
[Keywords] arterial spin labeling;four dimensional arterial spin labeling;four dimensional arterial spin labeling magnetic resonance angiography;magnetic resonance imaging;cerebrovascular disease

LIN Xiaoyi1, 2   ZHANG Zongli1*  

1 Department of Radiology, Chenjiaqiao Hospital, Shapingba District, Chongqing, Chongqing 401331, China

2 School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China

Corresponding author: Zhang ZL, E-mail: 545931672@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Joint Medical Scientific Research Project of Shapingba District Bureau of Science and Technology and Health Commission of Chongqing (No. 2021SQKWLH009); 2022 Shapingba District Decision-making Consultation and Management Innovation Project of Chongqing Shapingba District Bureau of Science and Technology (No. jcd202221); School-level Project Fund of Chongqing Medical and Pharmaceutical College (No. ygz2021131).
Received  2022-07-30
Accepted  2023-04-28
DOI: 10.12015/issn.1674-8034.2023.06.020
Cite this article as: LIN X Y, ZHANG Z L. Research progress on the application of 4D-ASL in cerebrovascular disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 113-118. DOI:10.12015/issn.1674-8034.2023.06.020.

[1]
WANG B, YU P, LIN W, et al. MicroRNA-21-5p Reduces Hypoxia/Reoxygenation-Induced Neuronal Cell Damage through Negative Regulation of CPEB3[J/OL]. Anal Cell Pathol (Amst), 2021, 2021: 5543212 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660214/pdf/ACP2021-5543212.pdf. DOI: 10.1155/2021/5543212.
[2]
SUZUKI Y, FUJIMA N, VAN OSCH M J P. Intracranial 3D and 4D MR Angiography Using Arterial Spin Labeling: Technical Considerations[J]. Magn Reson Med Sci, 2020, 19(4): 294-309. DOI: 10.2463/mrms.rev.2019-0096.
[3]
PHELLAN R, LINDNER T, HELLE M, et al. Segmentation-Based Blood Flow Parameter Refinement in Cerebrovascular Structures Using 4-D Arterial Spin Labeling MRA[J]. IEEE Trans Biomed Eng, 2020, 67(7): 1936-1946. DOI: 10.1109/tbme.2019.2951082.
[4]
PHELLAN R, LINDNER T, HELLE M, et al. A methodology for generating four-dimensional arterial spin labeling MR angiography virtual phantoms[J]. Med Image Anal, 2019, 56: 184-192. DOI: 10.1016/j.media.2019.06.002.
[5]
TOGAO O, OBARA M, KIKUCHI K, et al. Vessel-Selective 4D-MRA Using Superselective Pseudocontinuous Arterial Spin-Labeling with Keyhole and View-Sharing for Visualizing Intracranial Dural AVFs[J]. AJNR Am J Neuroradiol, 2022, 43(3): 368-375. DOI: 10.3174/ajnr.A7426.
[6]
LAVROVA A, TEUNISSEN W H T, WARNERT E A H, et al. Diagnostic Accuracy of Arterial Spin Labeling in Comparison With Dynamic Susceptibility Contrast-Enhanced Perfusion for Brain Tumor Surveillance at 3T MRI[J/OL]. Front Oncol, 2022, 12: 849657 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163566/pdf/fonc-12-849657.pdf. DOI: 10.3389/fonc.2022.849657.
[7]
JEZZARD P, CHAPPELL M A, OKELL T W. Arterial spin labeling for the measurement of cerebral perfusion and angiography[J]. J Cereb Blood Flow Metab, 2018, 38(4): 603-626. DOI: 10.1177/0271678x17743240.
[8]
QIN Q, ALSOP D C, BOLAR D S, et al. Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation[J]. Magn Reson Med, 2022, 88(4): 1528-1547. DOI: 10.1002/mrm.29371.
[9]
PHELLAN R, LINDNER T, HELLE M, et al. Automatic Temporal Segmentation of Vessels of the Brain Using 4D ASL MRA Images[J]. IEEE Trans Biomed Eng, 2018, 65(7): 1486-1494. DOI: 10.1109/tbme.2017.2759730.
[10]
SUZUKI Y, OKELL T W, FUJIMA N, et al. Acceleration of vessel-selective dynamic MR Angiography by pseudocontinuous arterial spin labeling in combination with Acquisition of ConTRol and labEled images in the Same Shot (ACTRESS)[J]. Magn Reson Med, 2019, 81(5): 2995-3006. DOI: 10.1002/mrm.27619.
[11]
KOOLSTRA K, STARING M, DE BRUIN P, et al. Subject-specific optimization of background suppression for arterial spin labeling Magn Reson Imaging using a feedback loop on the scanner[J/OL]. NMR Biomed, 2022: e4746[2022-07-29]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/nbm.4746. DOI: 10.1002/nbm.4746.
[12]
CALLEWAERT B, JONES E A V, HIMMELREICH U, et al. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations[J/OL]. Diagnostics (Basel), 2021, 11(6): 926 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224283/pdf/diagnostics-11-00926.pdf. DOI: 10.3390/diagnostics11060926.
[13]
NEUMANN K, GÜNTHER M, DÜZEL E, et al. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magn Reson Imaging: A Pilot Study[J/OL]. Front Aging Neurosci, 2022, 14: 871612 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161030/pdf/fnagi-14-871612.pdf. DOI: 10.3389/fnagi.2022.871612.
[14]
CHEN Z, ZHOU Z, QI H, et al. A novel sequence for simultaneous measurement of whole-brain static and dynamic MRA, intracranial vessel wall image, and T(1)-weighted structural brain MRI[J]. Magn Reson Med, 2021, 85(1): 316-325. DOI: 10.1002/mrm.28431.
[15]
IRYO Y, HIRAI T, NAKAMURA M, et al. Evaluation of Intracranial Vasculatures in Healthy Subjects with Arterial-Spin-Labeling-Based 4D-MR Angiography at 3T[J]. Magn Reson Med Sci, 2016, 15(3): 335-339. DOI: 10.2463/mrms.tn.2015-0081.
[16]
SUZUKI Y, HELLE M, KOKEN P, et al. Simultaneous acquisition of perfusion image and dynamic MR angiography using time-encoded pseudo-continuous ASL[J]. Magn Reson Med, 2018, 79(5): 2676-2684. DOI: 10.1002/mrm.26926.
[17]
WANG M, YANG Y, WANG Y, et al. Vessel-selective 4D MRA based on ASL might potentially show better performance than 3D TOF MRA for treatment evaluation in patients with intra-extracranial bypass surgery: a prospective study[J]. Eur Radiol, 2021, 31(7): 5263-5271. DOI: 10.1007/s00330-020-07503-3.
[18]
IRYO Y, HIRAI T, NAKAMURA M, et al. Collateral circulation via the circle of Willis in patients with carotid artery steno-occlusive disease: evaluation on 3-T 4D MRA using arterial spin labelling[J]. Clin Radiol, 2015, 70(9): 960-965. DOI: 10.1016/j.crad.2015.05.002.
[19]
FALK DELGADO A, VAN WESTEN D, NILSSON M, et al. Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging-a comprehensive overview[J/OL]. Insights Imaging, 2019, 10(1): 84 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708018/pdf/13244_2019_Article_771.pdf. DOI: 10.1186/s13244-019-0771-1.
[20]
SUI B, GAO P. Imaging evaluation of acute ischemic stroke[J/OL]. J Int Med Res, 2020, 48(1): 300060518802530 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113483/pdf/10.1177_0300060518802530.pdf. DOI: 10.1177/0300060518802530.
[21]
SHANG S, WANG L, YE J, et al. Can Hybrid Arterial Spin Labeling-Tagged Zero-Echo-Time Magnetic Resonance Angiography Be an Effective Candidate in the Evaluation of Intracranial Artery Diseases? A Clinical Feasibility Study[J]. J Magn Reson Imaging, 2021, 54(3): 938-949. DOI: 10.1002/jmri.27629.
[22]
CAO L, DONG Y, SUN K, et al. Experimental Animal Models for Moyamoya Disease: A Species-Oriented Scoping Review[J/OL]. Front Surg, 2022, 9: 929871 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283787/pdf/fsurg-09-929871.pdf. DOI: 10.3389/fsurg.2022.929871.
[23]
SOLLMANN N, LIEBL H, PREIBISCH C, et al. Super-selective ASL and 4D ASL-based MR Angiography in a Patient with Moyamoya Disease: Case Report[J]. Clin Neuroradiol, 2021, 31(2): 515-519. DOI: 10.1007/s00062-020-00961-8.
[24]
TOGAO O, HIWATASHI A, OBARA M, et al. 4D ASL-based MR angiography for visualization of distal arteries and leptomeningeal collateral vessels in moyamoya disease: a comparison of techniques[J]. Eur Radiol, 2018, 28(11): 4871-4881. DOI: 10.1007/s00330-018-5462-7.
[25]
UCHINO H, ITO M, FUJIMA N, et al. A novel application of four-dimensional magnetic resonance angiography using an arterial spin labeling technique for noninvasive diagnosis of Moyamoya disease[J]. Clin Neurol Neurosurg, 2015, 137: 105-111. DOI: 10.1016/j.clineuro.2015.07.003.
[26]
WANG M, WANG Y, ZHANG W, et al. Preoperative Collateral Perfusion Using Arterial Spin Labeling: A Predictor of Surgical Collaterals in Moyamoya Angiopathy[J/OL]. Front Neurosci, 2022, 16: 839485 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964430/pdf/fnins-16-839485.pdf. DOI: 10.3389/fnins.2022.839485.
[27]
KOKTZOGLOU I, WALKER M T, MEYER J R, et al. Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 18 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828773/pdf/12968_2016_Article_238.pdf. DOI: 10.1186/s12968-016-0238-1.
[28]
AYABE Y, HAMAMOTO K, YOSHINO Y, et al. Ultra-short Echo-time MR Angiography Combined with a Subtraction Method to Assess Intracranial Aneurysms Treated with a Flow-diverter Device[J]. Magn Reson Med Sci, 2023, 22(1): 117-125. DOI: 10.2463/mrms.tn.2021-0106.
[29]
KANG J H, YUN T J, RHIM J K, et al. Arterial spin labeling MR imaging aids to identify cortical venous drainage of dural arteriovenous fistulas[J/OL]. Medicine, 2018, 97(19): e0697 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959413/pdf/medi-97-e0697.pdf. DOI: 10.1097/md.0000000000010697.
[30]
AZAB M A, DIOSO E R, FINDLAY M C, et al. UPDATE ON MANAGEMENT OF DURAL ARTERIOVENOUS FISTULAS[J]. J Rare Dis Orphan Drugs, 2022, 3: 11-26. DOI: 10.36013/jrdod.v3i.102.
[31]
IRYO Y, HIRAI T, KAI Y, et al. Intracranial dural arteriovenous fistulas: evaluation with 3-T four-dimensional MR angiography using arterial spin labeling[J]. Radiology, 2014, 271(1): 193-199. DOI: 10.1148/radiol.13122670.
[32]
OBARA M, TOGAO O, HELLE M, et al. Improved selective visualization of internal and external carotid artery in 4D-MR angiography based on super-selective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK)[J]. Magn Reson Imaging, 2020, 73: 15-22. DOI: 10.1016/j.mri.2020.07.013.
[33]
TOLEDANO-MASSIAH S, BADAT N, GHORRA C, et al. Jugular venous reflux may mimic type I dural arterio-venous fistula on arterial spin labeling magnetic resonance images[J]. Neuroradiology, 2020, 62(4): 447-454. DOI: 10.1007/s00234-019-02346-2.
[34]
MURAZAKI H, WADA T, TOGAO O, et al. Optimization of 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) for vessel-selective visualization of the internal carotid artery and vertebrobasilar artery systems[J]. Magn Reson Imaging, 2022, 85: 287-296. DOI: 10.1016/j.mri.2021.10.040.
[35]
LIU J, HU C, ZHOU J, et al. RNF213 rare variants and cerebral arteriovenous malformation in a Chinese population[J/OL]. Clin Neurol Neurosurg, 2021, 203: 106582 [2022-07-29]. https://www.sciencedirect.com/science/article/abs/pii/S0303846721001098?via%3Dihub. DOI: 10.1016/j.clineuro.2021.106582.
[36]
RAMAN A, UPRETY M, CALERO M J, et al. A Systematic Review Comparing Digital Subtraction Angiogram With Magnetic Resonance Angiogram Studies in Demonstrating the Angioarchitecture of Cerebral Arteriovenous Malformations[J/OL]. Cureus, 2022, 14(6): e25803 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187205/pdf/cureus-0014-00000025803.pdf. DOI: 10.7759/cureus.25803.
[37]
IRYO Y, HIRAI T, NAKAMURA M, et al. Evaluation of Intracranial Arteriovenous Malformations With Four-Dimensional Arterial-Spin Labeling-Based 3-T Magnetic Resonance Angiography[J]. J Comput Assist Tomogr, 2016, 40(2): 290-296. DOI: 10.1097/rct.0000000000000346.
[38]
TOGAO O, OBARA M, HELLE M, et al. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics[J]. Eur Radiol, 2020, 30(12): 6452-6463. DOI: 10.1007/s00330-020-07057-4.
[39]
ARAI N, AKIYAMA T, FUJIWARA K, et al. Silent MRA: arterial spin labeling magnetic resonant angiography with ultra-short time echo assessing cerebral arteriovenous malformation[J]. Neuroradiology, 2020, 62(4): 455-461. DOI: 10.1007/s00234-019-02345-3.
[40]
ROJAS-VILLABONA A, SOKOLSKA M, SOLBACH T, et al. Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple-MRA)[J]. Br J Neurosurg, 2022, 36(2): 217-227. DOI: 10.1080/02688697.2021.1884649.
[41]
ROJAS-VILLABONA A, PIZZINI F B, SOLBACH T, et al. Are Dynamic Arterial Spin-Labeling MRA and Time-Resolved Contrast-Enhanced MRA Suited for Confirmation of Obliteration following Gamma Knife Radiosurgery of Brain Arteriovenous Malformations?[J]. AJNR Am J Neuroradiol, 2021, 42(4): 671-678. DOI: 10.3174/ajnr.A6990.
[42]
YU S, YAN L, YAO Y, et al. Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM), comparison with time of flight (TOF) and digital subtraction angiography (DSA)[J]. Magn Reson Imaging, 2012, 30(6): 869-877. DOI: 10.1016/j.mri.2012.02.027.
[43]
SUNG D, RISK B B, OWUSU-ANSAH M, et al. Optimized truncation to integrate multi-channel MRS data using rank-R singular value decomposition[J/OL]. NMR Biomed, 2020, 33(7): e4297 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317403/pdf/NBM-33-e4297.pdf. DOI: 10.1002/nbm.4297.
[44]
WANG M, MA Y, CHEN F, et al. Acceleration of pCASL-Based Cerebral 4D MR Angiography Using Compressed SENSE: A Comparison With SENSE[J/OL]. Front Neurol, 2022, 13: 796271 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977489/pdf/fneur-13-796271.pdf. DOI: 10.3389/fneur.2022.796271.
[45]
IN M H, TAN E T, TRZASKO J D, et al. Distortion-free imaging: A double encoding method (DIADEM) combined with multiband imaging for rapid distortion-free high-resolution diffusion imaging on a compact 3T with high-performance gradients[J]. J Magn Reson Imaging, 2020, 51(1): 296-310. DOI: 10.1002/jmri.26792.
[46]
SHENG J, YIN J, WANG L, et al. Parallel MR image reconstruction based on triple cycle optimization[J/OL]. Sci Rep, 2022, 12(1): 7783 [2022-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095676/pdf/41598_2022_Article_11935.pdf. DOI: 10.1038/s41598-022-11935-w.
[47]
KABASAWA H. MR Imaging in the 21st Century: Technical Innovation over the First Two Decades[J]. Magn Reson Med Sci, 2022, 21(1): 71-82. DOI: 10.2463/mrms.rev.2021-0011.
[48]
HERNANDEZ-GARCIA L, ARAMENDÍA-VIDAURRETA V, BOLAR D S, et al. Recent Technical Developments in ASL: A Review of the State of the Art[J]. Magn Reson Med, 2022, 88(5): 2021-2042. DOI: 10.1002/mrm.29381.
[49]
CONG F, ZHUO Y, YU S, et al. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study[J]. J Magn Reson Imaging, 2018, 48(1): 111-120. DOI: 10.1002/jmri.25923.
[50]
SHAO X, YAN L, MA S J, et al. High-Resolution Neurovascular Imaging at 7T: Arterial Spin Labeling Perfusion, 4-Dimensional MR Angiography, and Black Blood MR Imaging[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 53-65. DOI: 10.1016/j.mric.2020.09.003.

PREV Application progress of functional magnetic resonance imaging in the treatment of sleep disorder with traditional Chinese and western medicine
NEXT Advances in imaging research of vertebral artery hypoplasia and its relationship with posterior circulation ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn