Share:
Share this content in WeChat
X
Review
Research progresses of cardiac magnetic resonance in 2022
ZHANG Huaying  ZHU Leyi  ZHAO Shihua  LU Minjie 

Cite this article as: ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imaging, 2023, 14(6): 133-138, 144. DOI:10.12015/issn.1674-8034.2023.06.024.


[Abstract] Cardiac magnetic resonance (CMR) offers the advantages of multi-parameter and multi-sequence imaging. It has achieved "one-stop" examination on cardiac morphology, function, histology, perfusion, blood flow and the like, thus being regarded as an indispensable noninvasive imaging test for diagnosis and treatment of multiple cardiovascular diseases. In this review, we will briefly review the progress of CMR technology such as T1 mapping and feature tracking in 2022. We will then focus on the clinical application in diagnosis and differentiation, treatment and prognosis of various cardiovascular disease including ischemic heart disease, non-ischemic cardiomyopathy, heart failure and so on. We hope that this article can provide domestic professionals with assistance in clinical application and scientific research.
[Keywords] cardiac magnetic resonance;T1 mapping;feature tracking;cardiomyopathy;myocardial infarction;heart failure;arrhythmia;COVID-19

ZHANG Huaying1, 2   ZHU Leyi1   ZHAO Shihua1   LU Minjie1*  

1 Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China

2 Department of Radiology, South China University of Technology, Guangzhou 510006, China

Corresponding author: Lu MJ, E-mail: coolkan@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81971588); Key Laboratory of Construction Project of the Chinese Academy of Medical Sciences (No. 2019PT310025); Key Project of Clinical Research for Young People in High-Level Hospitals (No. 2022-GSP-QZ-5); Clinical and Translational Medicine Research Foundation of Chinese Academy of Medical Sciences (No. 2019XK320063).
Received  2023-01-14
Accepted  2023-05-18
DOI: 10.12015/issn.1674-8034.2023.06.024
Cite this article as: ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imaging, 2023, 14(6): 133-138, 144. DOI:10.12015/issn.1674-8034.2023.06.024.

[1]
RAO S, TSENG S Y, PEDNEKAR A, et al. Myocardial parametric mapping by cardiac magnetic resonance imaging in pediatric cardiology and congenital heart disease[J/OL]. Circ Cardiovasc Imaging, 2022, 15(1): e012242 [2023-01-13]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.120.012242. DOI: 10.1161/CIRCIMAGING.120.012242.
[2]
LI S, ZHOU D, SIRAJUDDIN A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy: a prognosis study[J]. JACC Cardiovasc Imaging, 2022, 15(4): 578-590. DOI: 10.1016/j.jcmg.2021.07.023.
[3]
FERREIRA V M, SCHULZ-MENGER J, HOLMVANG G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[4]
MARQUES M D, WEINBERG R, KAPOOR S, et al. Myocardial fibrosis by T1 mapping magnetic resonance imaging predicts incident cardiovascular events and all-cause mortality: the Multi-Ethnic Study of Atherosclerosis[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1407-1416. DOI: 10.1093/ehjci/jeac010.
[5]
MARTINEZ-NAHARRO A, PATEL R, KOTECHA T, et al. Cardiovascular magnetic resonance in light-chain amyloidosis to guide treatment[J]. Eur Heart J, 2022, 43(45): 4722-4735. DOI: 10.1093/eurheartj/ehac363.
[6]
RICHMANN D P, GURIJALA N, MANDELL J G, et al. Native T1 mapping detects both acute clinical rejection and graft dysfunction in pediatric heart transplant patients[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 51 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/36192743/. DOI: 10.1186/s12968-022-00875-z.
[7]
QIN L, GU S J, XIAO R J, et al. Value of native T1 mapping in the prediction of major adverse cardiovascular events in hemodialysis patients[J]. Eur Radiol, 2022, 32(10): 6878-6890. DOI: 10.1007/s00330-022-08839-8.
[8]
WARNICA W, AL-ARNAWOOT A, STANIMIROVIC A, et al. Clinical impact of cardiac MRI T1 and T2 parametric mapping in patients with suspected cardiomyopathy[J]. Radiology, 2022, 305(2): 319-326. DOI: 10.1148/radiol.220067.
[9]
JEROSCH-HEROLD M, COELHO-FILHO O. Cardiac MRI T1 and T2 mapping: a new crystal ball?[J]. Radiology, 2022, 305(2): 327-328. DOI: 10.1148/radiol.221395.
[10]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance-2020 update: society for Cardiovascular Magnetic Resonance (SCMR): board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/32160925/. DOI: 10.1186/s12968-020-00610-6.
[11]
CHITIBOI T, AXEL L. Magnetic resonance imaging of myocardial strain: a review of current approaches[J]. J Magn Reson Imaging, 2017, 46(5): 1263-1280. DOI: 10.1002/jmri.25718.
[12]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[13]
AZZU A, ANTONOPOULOS A S, KRUPICKOVA S, et al. Myocardial strain analysis by cardiac magnetic resonance 3D feature-tracking identifies subclinical abnormalities in patients with neuromuscular disease and no overt cardiac involvement[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 503-511. DOI: 10.1093/ehjci/jeac129.
[14]
TONDI L, FIGLIOZZI S, BADANO L P, et al. Cardiac magnetic resonance feature-tracking analysis of left atrial volumes and function in standard vs left-atrial focused images[J/OL]. Eur Heart J, 2022, 43(Supplement_2): ehac544.226 [2023-01-13]. https://www.researchgate.net/publication/364539154_Cardiac_magnetic_resonance_feature-tracking_analysis_of_left_atrial_volumes_and_function_in_standard_vs_left-atrial_focused_images. DOI: 10.1093/eurheartj/ehac544.226.
[15]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. DOI: 10.1007/s00330-022-08598-6.
[16]
LI G X, ZHANG Z, GAO Y Y, et al. Age- and sex-specific reference values of biventricular strain and strain rate derived from a large cohort of healthy Chinese adults: a cardiovascular magnetic resonance feature tracking study[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 63 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/36404299/. DOI: 10.1186/s12968-022-00881-1.
[17]
MORALES M A, CIRILLO J, NAKATA K, et al. Comparison of DeepStrain and feature tracking for cardiac MRI strain analysis[J]. J Magn Reson Imaging, 2023, 57(5): 1507-1515. DOI: 10.1002/jmri.28374.
[18]
LIU J, ZHAO S H, YU S Q, et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy[J]. Radiology, 2022, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[19]
ANTIOCHOS P, GE Y, HEYDARI B, et al. Prognostic value of stress cardiac magnetic resonance in patients with known coronary artery disease[J]. JACC Cardiovasc Imaging, 2022, 15(1): 60-71. DOI: 10.1016/j.jcmg.2021.06.025.
[20]
ZHAO X Y, ZHAO X X, JIN F W, et al. Prognostic value of cardiac-MRI scar heterogeneity combined with left ventricular strain in patients with myocardial infarction[J/OL]. J Magn Reson Imaging, 2022 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/36377611/. DOI: 10.1002/jmri.28478.
[21]
MARON B J, DESAI M Y, NISHIMURA R A, et al. Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 79(4): 372-389. DOI: 10.1016/j.jacc.2021.12.002.
[22]
SONG Y Y, BI X Y, CHEN L, et al. Reduced myocardial septal function assessed by cardiac magnetic resonance feature tracking in patients with hypertrophic obstructive cardiomyopathy: associated with histological myocardial fibrosis and ventricular arrhythmias[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(8): 1006-1015. DOI: 10.1093/ehjci/jeac032.
[23]
MANCIO J, PASHAKHANLOO F, EL-REWAIDY H, et al. Machine learning phenotyping of scarred myocardium from cine in hypertrophic cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(4): 532-542. DOI: 10.1093/ehjci/jeab056.
[24]
MAHMOD M, RAMAN B, CHAN K, et al. Right ventricular function declines prior to left ventricular ejection fraction in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 36 [2023-01-23]. https://pubmed.ncbi.nlm.nih.gov/36377611/. DOI: 10.1186/s12968-022-00868-y.
[25]
ZHANG Y, ZHU Y M, ZHANG M, et al. Implications of structural right ventricular involvement in patients with hypertrophic cardiomyopathy[J]. Eur Heart J Qual Care Clin Outcomes, 2022, 9(1): 34-41. DOI: 10.1093/ehjqcco/qcac008.
[26]
LI S, WANG Y N, YANG W J, et al. Cardiac MRI risk stratification for dilated cardiomyopathy with left ventricular ejection fraction of 35% or higher[J/OL]. Radiology, 2023, 306(3): e213059 [2023-01-23]. https://pubmed.ncbi.nlm.nih.gov/36318031/. DOI: 10.1148/radiol.213059.
[27]
LEYVA F, ZEGARD A, OKAFOR O, et al. Myocardial fibrosis predicts ventricular arrhythmias and sudden death after cardiac electronic device implantation[J]. J Am Coll Cardiol, 2022, 79(7): 665-678. DOI: 10.1016/j.jacc.2021.11.050.
[28]
GAO Y, WANG H P, LIU M X, et al. Early detection of myocardial fibrosis in cardiomyopathy in the absence of late enhancement: role of T1 mapping and extracellular volume analysis[J]. Eur Radiol, 2023, 33(3): 1982-1991. DOI: 10.1007/s00330-022-09147-x.
[29]
LI Y J, XU Y W, TANG S Q, et al. Left atrial function predicts outcome in dilated cardiomyopathy: fast long-axis strain analysis derived from MRI[J]. Radiology, 2022, 302(1): 72-81. DOI: 10.1148/radiol.2021210801.
[30]
RAAFS A G, VOS J L, HENKENS M T H M, et al. Left atrial strain has superior prognostic value to ventricular function and delayed-enhancement in dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2022, 15(6): 1015-1026. DOI: 10.1016/j.jcmg.2022.01.016.
[31]
WHITE J A. Left atrial strain in DilatedCardiomyopathy[J]. JACC Cardiovasc Imaging, 2022, 15(6): 1027-1029. DOI: 10.1016/j.jcmg.2022.02.009.
[32]
CUDDY S A M, JEROSCH-HEROLD M, FALK R H, et al. Myocardial composition in light-chain cardiac amyloidosis more than 1 year after successful therapy[J]. JACC Cardiovasc Imaging, 2022, 15(4): 594-603. DOI: 10.1016/j.jcmg.2021.09.032.
[33]
DAMY T, ZAROUI A, OGHINA S. The challenge of managing patients with light-chain cardiac amyloidosis: the value of cardiac magnetic resonance as a guide to the treatment response[J]. Eur Heart J, 2022, 43(45): 4736-4738. DOI: 10.1093/eurheartj/ehac526.
[34]
YILMAZ A. Interpretation of CMR-based mapping findings in cardiac amyloidosis: please act with caution![J]. JACC Cardiovasc Imaging, 2022, 15(4): 604-606. DOI: 10.1016/j.jcmg.2021.12.006.
[35]
PEZEL T, HOVASSE T, LEFÈVRE T, et al. Prognostic value of stress CMR in symptomatic patients with coronary Stenosis on CCTA[J]. JACC Cardiovasc Imaging, 2022, 15(8): 1408-1422. DOI: 10.1016/j.jcmg.2022.03.008.
[36]
KAOLAWANICH Y, AZEVEDO C F, KIM H W, et al. Native T1 mapping for the diagnosis of myocardial fibrosis in patients with chronic myocardial infarction[J]. JACC Cardiovasc Imaging, 2022, 15(12): 2069-2079. DOI: 10.1016/j.jcmg.2022.09.011.
[37]
KOLENTINIS M, CARERJ L M, VIDALAKIS E, et al. Determination of scar area using native and post-contrast T1 mapping: agreement with late gadolinium enhancement[J/OL]. Eur J Radiol, 2022, 150: 110242 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/35290909/. DOI: 10.1016/j.ejrad.2022.110242.
[38]
ANTIOCHOS P, GE Y, VAN DER GEEST R J, et al. Entropy as a measure of myocardial tissue heterogeneity in patients with ventricular arrhythmias[J]. JACC Cardiovasc Imaging, 2022, 15(5): 783-792. DOI: 10.1016/j.jcmg.2021.12.003.
[39]
WU K C, CHRISPIN J. More than meets the eye[J]. JACC Cardiovasc Imaging, 2022, 15(5): 793-795. DOI: 10.1016/j.jcmg.2022.01.012.
[40]
BAUER B K, MEIER C, BIETENBECK M, et al. Cardiovascular magnetic resonance-guided radiofrequency ablation: where are we now?[J]. JACC Clin Electrophysiol, 2022, 8(2): 261-274. DOI: 10.1016/j.jacep.2021.11.017.
[41]
MARROUCHE N F, WAZNI O, MCGANN C, et al. Effect of MRI-guided fibrosis ablation vs conventional catheter ablation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: the DECAAF II randomized clinical trial[J]. JAMA, 2022, 327(23): 2296-2305. DOI: 10.1001/jama.2022.8831.
[42]
BROWN L A E, WAHAB A, IKONGO E, et al. Cardiovascular magnetic resonance phenotyping of heart failure with mildly reduced ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2022, 24(1): 38-45. DOI: 10.1093/ehjci/jeac204.
[43]
ROSCH S, KRESOJA K P, BESLER C, et al. Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction[J]. Circulation, 2022, 146(7): 506-518. DOI: 10.1161/CIRCULATIONAHA.122.059280.
[44]
ANTHONY C, IMRAN M, POULIOPOULOS J, et al. Cardiovascular magnetic resonance for rejection surveillance after cardiac transplantation[J]. Circulation, 2022, 145(25): 1811-1824. DOI: 10.1161/CIRCULATIONAHA.121.057006.
[45]
SANCHEZ MARTINEZ M, HURTADO DUARTE A M, CHANGO AZANZA D, et al. Myocardial damage in patients with immunological diseases evaluated by cardiovascular magnetic resonance imaging[J/OL]. Eur Heart J, 2022, 43(Supplement_2): ehac544.182 [2023-01-13]. https://academic.oup.com/eurheartj/article/43/Supplement_2/ehac544.182/6743466. DOI: 10.1093/eurheartj/ehac544.182.
[46]
SIERRA-GALAN L M, BHATIA M, ALBERTO-DELGADO A L, et al. Cardiac magnetic resonance in rheumatology to detect cardiac involvement since early and pre-clinical stages of the autoimmune diseases: a narrative review[J/OL]. Front Cardiovasc Med, 2022, 9: 870200 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/35911548/. DOI: 10.3389/fcvm.2022.870200.
[47]
SHAKIR M A, SERNYAK A. An inflamed heart: a case of systemic lupus erythematosus associated myocarditis[J/OL]. J Am Coll Cardiol, 2022, 79(9): 2607 [2023-01-13]. https://linkinghub.elsevier.com/retrieve/pii/S0735109722035987. DOI: 10.1016/S0735-1097(22)03598-7.
[48]
CHOI E, MATHEWS L M, PAIK J, et al. Multimodality evaluation of aortic insufficiency and aortitis in rheumatologic diseases[J/OL]. Front Cardiovasc Med, 2022, 9: 874242 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/35497991/. DOI: 10.3389/fcvm.2022.874242.
[49]
RAMAN B, BLUEMKE D A, LÜSCHER T F, et al. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus[J]. Eur Heart J, 2022, 43(11): 1157-1172. DOI: 10.1093/eurheartj/ehac031.
[50]
ARTICO J, SHIWANI H, MOON J C, et al. Myocardial involvement after hospitalization for COVID-19 complicated by troponin elevation: a prospective, multicenter, observational study[J]. Circulation, 2023, 147(5): 364-374. DOI: 10.1161/CIRCULATIONAHA.122.060632.
[51]
JOHNSON J N, LORIAUX D B, JENISTA E, et al. Society for Cardiovascular Magnetic Resonance 2021 cases of SCMR and COVID-19 case collection series[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 42 [2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/35787291/. DOI: 10.1186/s12968-022-00872-2.
[52]
PETERSEN S E, FRIEDRICH M G, LEINER T, et al. Cardiovascular magnetic resonance for patients with COVID-19[J]. JACC Cardiovasc Imaging, 2022, 15(4): 685-699. DOI: 10.1016/j.jcmg.2021.08.021.
[53]
ZHOU L P, YU L L, JIANG H. Interpretation of the 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2023, 51: 1-5. DOI: 10.3760/cma.j.cn112148-20230201-00055.

PREV Research progress of MRI radiomics in lung cancer
NEXT Application of generative adversarial networks in cardiac magnetic resonance
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn