Share:
Share this content in WeChat
X
Review
Research progress on the application of magnetic resonance T2 mapping technology in heart disease
JIA Siqi  YAN Chunlong  JIN Yuhua  QI Xianlong 

Cite this article as: JIA S Q, YAN C L, JIN Y H, et al. Research progress on the application of magnetic resonance T2 mapping technology in heart disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 145-150. DOI:10.12015/issn.1674-8034.2023.06.026.


[Abstract] Cardiac magnetic resonance (CMR) imaging has developed into an important non-invasive imaging method because of its non-invasive, radiation-free, multi-parameter, arbitrary angle imaging, and ability to characterize myocardial activity. Based on T2WI, T2 mapping has the advantage of accurately characterizing myocardial edema, quickly and high-quality acquisition of myocardial T2 images in various disease states, and quantitative evaluation and analysis, which makes up for the shortcomings of traditional MRI subjective evaluation and makes the diagnosis tend to be objective and accurate Change. T2 mapping values vary depending on the concentration of water in the myocardium, so T2 mapping can be used to diagnose infiltrative cardiomyopathy and myocardial injury characterized by edema, necrosis, or bleeding formation, as well as to diagnose heart transplant rejection. This article will summarize the principle of T2 mapping technology and its clinical application in heart disease.
[Keywords] cardiac diseases;myocardial edema;myocardial infarction;myocarditis;cardiomyopathy;T2 mapping;magnetic resonance imaging;early diagnosis

JIA Siqi1   YAN Chunlong2   JIN Yuhua1   QI Xianlong2*  

1 Medical College of Jining Medical University, Jining 272002, China

2 Department of Radiology, Jining First People's Hospital, Jining 272002, China

Corresponding author: Qi XL, E-mail: qixianlong@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS The 'Qihang' Scientific Research Project of Jining No.1 People's Hospital (No. 2021-QHM-020).
Received  2022-12-11
Accepted  2023-04-24
DOI: 10.12015/issn.1674-8034.2023.06.026
Cite this article as: JIA S Q, YAN C L, JIN Y H, et al. Research progress on the application of magnetic resonance T2 mapping technology in heart disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 145-150. DOI:10.12015/issn.1674-8034.2023.06.026.

[1]
CREA F. Cardiac magnetic resonance: challenges, opportunities, and developments[J]. Eur Heart J, 2022, 43(26): 2427-2431. DOI: 10.1093/eurheartj/ehac355.
[2]
GÖRANSSON C, AHTAROVSKI K A, KYHL K, et al. Assessment of the myocardial area at risk: comparing T2-weighted cardiovascular magnetic resonance imaging with contrast-enhanced cine (CE-SSFP) imaging-a DANAMI3 substudy[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(3): 361-366. DOI: 10.1093/ehjci/jey106.
[3]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[4]
RABBAT M G, KWONG R Y, HEITNER J F, et al. The future of cardiac magnetic resonance clinical trials[J]. JACC Cardiovasc Imaging, 2022, 15(12): 2127-2138. DOI: 10.1016/j.jcmg.2021.07.029.
[5]
NAKOU E, PATEL R K, FONTANA M, et al. Cardiovascular magnetic resonance parametric mapping techniques: clinical applications and limitations[J/OL]. Curr Cardiol Rep, 2021, 23(12): 185 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/34762189. DOI: 10.1007/s11886-021-01607-y. DOI: 10.1007/s11886-021-01607-y.
[6]
JEROSCH-HEROLD M, COELHO-FILHO O. Cardiac MRI T1 and T2 mapping: a new crystal ball?[J]. Radiology, 2022, 305(2): 327-328. DOI: 10.1148/radiol.221395.
[7]
THOMAS K E, FOTAKI A, BOTNAR R M, et al. Imaging methods: magnetic resonance imaging[J/OL]. Circ Cardiovasc Imaging, 2023, 16(1): e014068 [2023-04-07]. https://pubmed.ncbi.nlm.nih.gov/36649450. DOI: 10.1161/CIRCIMAGING.122.014068.
[8]
SABOURI S, CHANG S D, SAVDIE R, et al. Luminal water imaging: a new MR imaging T2 mapping technique for prostate cancer diagnosis[J]. Radiology, 2017, 284(2): 451-459. DOI: 10.1148/radiol.2017161687.
[9]
KELLMAN P, XUE H, CHOW K, et al. Bright-blood and dark-blood phase sensitive inversion recovery late gadolinium enhancement and T1 and T2 maps in a single free-breathing scan: an all-in-one approach[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 126 [2023-04-07]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-021-00823-3. DOI: 10.1186/s12968-021-00823-3.
[10]
TOPRICEANU C C, PIERCE I, MOON J C, et al. T2 and T2 mapping and weighted imaging in cardiac MRI[J]. Magn Reson Imaging, 2022, 93: 15-32. DOI: 10.1016/j.mri.2022.07.012.
[11]
SONG Y, GUO Y K, XU H Y, et al. Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation[J]. Chin J Magn Reson Imaging, 2021, 12(11): 109-112, 121. DOI: 10.12015/issn.1674-8034.2021.11.027.
[12]
BASHA T, AKCAKAYA M, ROUJOL S, et al. Precision and reproducibility of T_2 quantifications in myocardial T_2 mapping: impact of the number of echoes and reconstruction model[J]. J Cardiovasc Magn Reson, 2015, 17(1): 1-3. DOI: 10.1186/1532-429X-17-S1-W9.
[13]
BUSTIN A, MILOTTA G, ISMAIL T F, et al. Accelerated free-breathing whole-heart 3D T2 mapping with high isotropic resolution[J]. Magn Reson Med, 2020, 83(3): 988-1002. DOI: 10.1002/mrm.27989.
[14]
RAUDNER M, SCHREINER M M, HILBERT T, et al. Clinical implementation of accelerated T2 mapping: quantitative magnetic resonance imaging as a biomarker for annular tear and lumbar disc herniation[J]. Eur Radiol, 2021, 31(6): 3590-3599. DOI: 10.1007/s00330-020-07538-6.
[15]
FOTAKI A, PUYOL-ANTÓN E, CHIRIBIRI A, et al. Artificial intelligence in cardiac MRI: is clinical adoption forthcoming?[J/OL]. Front Cardiovasc Med, 2022, 8: 818765 [2023-03-22]. https://pubmed.ncbi.nlm.nih.gov/35083303. DOI: 10.3389/fcvm.2021.818765.
[16]
ZHAO X H, LIU X F, MA H Y, et al. T1, T2 mapping and extracellular volume diagnostic value in patients with acute myocardial infarction[J]. J Pract Med, 2021, 37(10): 1337-1341. DOI: 10.3969/j.issn.1006-5725.2021.10.021.
[17]
THOMAS R, THAI K, BARRY J, et al. T2-based area-at-risk and edema are influenced by ischemic duration in acute myocardial infarction[J]. Magn Reson Imaging, 2021, 79: 1-4. DOI: 10.1016/j.mri.2021.02.011.
[18]
LI Y L, WANG G K, WANG X Y, et al. Prognostic significance of myocardial salvage assessed by cardiac magnetic resonance in reperfused ST-segment elevation myocardial infarction[J/OL]. Front Cardiovasc Med, 2022, 9: 924428 [2023-03-22]. https://pubmed.ncbi.nlm.nih.gov/36110410. DOI: 10.3389/fcvm.2022.924428.
[19]
FERNÁNDEZ-JIMÉNEZ R, SÁNCHEZ-GONZÁLEZ J, AGÜERO J, et al. Myocardial edema after ischemia/reperfusion is not stable andFollowsaBimodal pattern[J]. J Am Coll Cardiol, 2015, 65(4): 315-323. DOI: 10.1016/j.jacc.2014.11.004.
[20]
WANG G, YANG H J, KALI A, et al. Influence of myocardial hemorrhage on staging of reperfused myocardial infarctions with T2 cardiac magnetic resonance imaging: insights into the dependence on infarction type with ex vivo validation[J]. JACC Cardiovasc Imaging, 2019, 12(4): 693-703. DOI: 10.1016/j.jcmg.2018.01.018.
[21]
PAVON A G, GEORGIOPOULOS G, VINCENTI G, et al. Head-to-head comparison of multiple cardiovascular magnetic resonance techniques for the detection and quantification of intramyocardial haemorrhage in patients with ST-elevation myocardial infarction[J]. Eur Radiol, 2021, 31(3): 1245-1256. DOI: 10.1007/s00330-020-07254-1.
[22]
MÜLLER M, COOPER L T, HEIDECKER B. Diagnosis, risk stratification and management of myocarditis[J]. Heart, 2022, 108(18): 1486-1497. DOI: 10.1136/heartjnl-2021-319027.
[23]
PORCARI A, BAGGIO C, FABRIS E, et al. Endomyocardial biopsy in the clinical context: current indications and challenging scenarios[J]. Heart Fail Rev, 2023, 28(1): 123-135. DOI: 10.1007/s10741-022-10247-5.
[24]
CHEN Y, LUO L, HE J L, et al. Myocardial segmentation of MRI T1 mapping and T2 mapping in diagnosis of acute myocarditis[J]. Chin J Med Imaging, 2019, 27(8): 599-604, 606. DOI: 10.3969/j.issn.1005-5185.2019.08.009.
[25]
SPIEKER M, KATSIANOS E, GASTL M, et al. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(5): 574-582. DOI: 10.1093/ehjci/jex230.
[26]
TSCHÖPE C, AMMIRATI E, BOZKURT B, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions[J]. Nat Rev Cardiol, 2021, 18(3): 169-193. DOI: 10.1038/s41569-020-00435-x.
[27]
CATAPANO F, MARCHITELLI L, CUNDARI G, et al. Role of advanced imaging in COVID-19 cardiovascular complications[J/OL]. Insights Imaging, 2021, 12(1): 28 [2023-03-23]. https://pubmed.ncbi.nlm.nih.gov/33625637. DOI: 10.1186/s13244-021-00973-z.
[28]
LALA A, JOHNSON K W, JANUZZI J L, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection[J]. J Am Coll Cardiol, 2020, 76(5): 533-546. DOI: 10.1016/j.jacc.2020.06.007.
[29]
GALEA N, MARCHITELLI L, PAMBIANCHI G, et al. T2-mapping increase is the prevalent imaging biomarker of myocardial involvement in active COVID-19: a Cardiovascular Magnetic Resonance study[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 68 [2023-03-22]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-021-00764-x. DOI: 10.1186/s12968-021-00764-x.
[30]
SPOLADORE R, FISICARO A, FACCINI A, et al. Coronary microvascular dysfunction in primary cardiomyopathies[J]. Heart, 2014, 100(10): 806-813. DOI: 10.1136/heartjnl-2013-304291.
[31]
HUANG L, RAN L P, ZHAO P J, et al. MRI native T1 and T2 mapping of myocardial segments in hypertrophic cardiomyopathy: tissue remodeling manifested prior to structure changes[J/OL]. Br J Radiol, 2019, 92(1104): 20190634 [2023-03-23]. https://pubmed.ncbi.nlm.nih.gov/31613647. DOI: 10.1259/bjr.20190634.
[32]
GASTL M, LACHMANN V, CHRISTIDI A, et al. Cardiac magnetic resonance T2 mapping and feature tracking in athlete's heart and HCM[J]. Eur Radiol, 2021, 31(5): 2768-2777. DOI: 10.1007/s00330-020-07289-4.
[33]
ABBASI M A, BLAKE A M, SARNARI R, et al. Multiparametric cardiac magnetic resonance imaging detects altered myocardial tissue and function in heart transplantation recipients monitored for cardiac allograft vasculopathy[J]. J Cardiovasc Imaging, 2022, 30(4): 263-275. DOI: 10.4250/jcvi.2022.0003.
[34]
SNEL G J H, VAN DEN BOOMEN M, HERNANDEZ L M, et al. Cardiovascular magnetic resonance native T2 and T2* quantitative values for cardiomyopathies and heart transplantations: a systematic review and meta-analysis[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 34 [2023-03-23]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-020-00627-x. DOI: 10.1186/s12968-020-00627-x.
[35]
DOLAN R S, RAHSEPAR A A, BLAISDELL J, et al. Multiparametric cardiac magnetic resonance imaging can detect acute cardiac allograft rejection after heart transplantation[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1632-1641. DOI: 10.1016/j.jcmg.2019.01.026.
[36]
KERSTING D, SETTELMEIER S, MAVROEIDI I A, et al. Shining damaged hearts: immunotherapy-related cardiotoxicity in the spotlight of nuclear cardiology[J/OL]. Int J Mol Sci, 2022, 23(7): 3802 [2023-03-22]. https://pubmed.ncbi.nlm.nih.gov/35409161. DOI: 10.3390/ijms23073802.
[37]
BOTTINOR W, TRANKLE C R, HUNDLEY W G. The role of cardiovascular MRI in cardio-oncology[J]. Heart Fail Clin, 2021, 17(1): 121-133. DOI: 10.1016/j.hfc.2020.08.009.
[38]
GALÁN-ARRIOLA C, LOBO M, VÍLCHEZ-TSCHISCHKE J P, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity[J]. J Am Coll Cardiol, 2019, 73(7): 779-791. DOI: 10.1016/j.jacc.2018.11.046.
[39]
HARRIES I, BIGLINO G, FORD K, et al. Prospective multiparametric CMR characterization and microRNA profiling of anthracycline cardiotoxicity: a pilot translational study[J/OL]. Int J Cardiol Heart Vasc, 2022, 43: 101134 [2023-03-22]. https://pubmed.ncbi.nlm.nih.gov/36389268. DOI: 10.1016/j.ijcha.2022.101134.
[40]
KOTECHA T, MARTINEZ-NAHARRO A, YOOWANNAKUL S, et al. Acute changes in cardiac structural and tissue characterisation parameters following haemodialysis measured using cardiovascular magnetic resonance[J/OL]. Sci Rep, 2019, 9(1): 1388 [2023-03-22]. https://pubmed.ncbi.nlm.nih.gov/30718606. DOI: 10.1038/s41598-018-37845-4.
[41]
ROSSIDES M, KULLBERG S, GRUNEWALD J, et al. Risk and predictors of heart failure in sarcoidosis in a population-based cohort study from Sweden[J]. Heart, 2022, 108(6): 467-473. DOI: 10.1136/heartjnl-2021-319129.
[42]
PUNTMANN V O, ISTED A, HINOJAR R, et al. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis[J]. Radiology, 2017, 285(1): 63-72. DOI: 10.1148/radiol.2017162732.
[43]
WOOLEN S A, SHANKAR P R, GAGNIER J J, et al. Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group Ⅱ gadolinium-based contrast agent: a systematic review and meta-analysis[J]. JAMA Intern Med, 2020, 180(2): 223-230. DOI: 10.1001/jamainternmed.2019.5284.
[44]
LIANG Y D, XU Y W, LI W H, et al. Left ventricular function recovery in peripartum cardiomyopathy: a cardiovascular magnetic resonance study by myocardial T1 and T2 mapping[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 2 [2023-03-22]. https://pubmed.ncbi.nlm.nih.gov/31902370/. DOI: 10.1186/s12968-019-0590-z.

PREV Application of generative adversarial networks in cardiac magnetic resonance
NEXT Research progress of multiparametric MRI radiomics in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn