Share:
Share this content in WeChat
X
Review
Progress of MRI and Radiomics in predicting the response to neoadjuvant therapy for breast cancer in different molecular subtypes
CHEN Shuluan  CHE Shu'nan  LI Jing 

Cite this article as: CHEN S L, CHE S N, LI J. Progress of MRI and Radiomics in predicting the response to neoadjuvant therapy for breast cancer in different molecular subtypes[J]. Chin J Magn Reson Imaging, 2023, 14(6): 156-160. DOI:10.12015/issn.1674-8034.2023.06.028.


[Abstract] Neoadjuvant therapy (NAT) is an important part of comprehensive treatment in breast cancer. Magnetic resonance imaging (MRI) is a major method in predicting the response to NAT, but still has certain limitations and some differences in the accuracy of efficacy evaluation of different molecular subtypes of breast cancer. Existing researches show that the radiomics model based on MRI can improve prediction performance. Aiming at different molecular subtypes of breast cancer, the establishment of image omics and deep learning models combined with multi-parameter MRI can further improve the prediction efficiency and accurately guide clinical decision-making. In this paper, the value of MRI in evaluating NAT efficacy of different molecular subtypes of breast cancer, the predictive efficacy of combined imagomics and deep learning models, as well as the problems and challenges faced were reviewed, aiming to provide references for further research and clinical practice.
[Keywords] breast cancer;molecular subtypes;neoadjuvant therapy;response evaluation;magnetic resonance imaging;radiomics;deep learning

CHEN Shuluan   CHE Shu'nan   LI Jing*  

Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Corresponding author: Li J, E-mail: dr.lijing@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Beijing Hope Run Special Fund of Cancer Foundation of China (No. LC2018B08).
Received  2022-07-18
Accepted  2023-05-17
DOI: 10.12015/issn.1674-8034.2023.06.028
Cite this article as: CHEN S L, CHE S N, LI J. Progress of MRI and Radiomics in predicting the response to neoadjuvant therapy for breast cancer in different molecular subtypes[J]. Chin J Magn Reson Imaging, 2023, 14(6): 156-160. DOI:10.12015/issn.1674-8034.2023.06.028.

[1]
BURSTEIN H J, CURIGLIANO G, THÜRLIMANN B, et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021[J]. Ann Oncol, 2021, 32(10): 1216-1235. DOI: 10.1016/j.annonc.2021.06.023.
[2]
Expert group of expert consensus on neoadjuvant treatment of breast cancer in China (2022). Expert consensus on neoadjuvant treatment of breast cancer in China(2022 edition)[J]. China Oncol, 2022, 32(1): 80-88. DOI: 10.19401/j.cnki.1007-3639.2022.01.011.
[3]
CORTAZAR P, ZHANG L, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI: 10.1016/s0140-6736(13)62422-8.
[4]
KO E S, HAN H, HAN B K, et al. Prognostic significance of a complete response on breast MRI in patients who received neoadjuvant chemotherapy according to the molecular subtype[J]. Korean J Radiol, 2015, 16(5): 986-995. DOI: 10.3348/kjr.2015.16.5.986.
[5]
MANN R M, CHO N, MOY L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[6]
SCHEEL J R, KIM E, PARTRIDGE S C, et al. MRI, clinical examination, and mammography for preoperative assessment of residual disease and pathologic complete response after neoadjuvant chemotherapy for breast cancer: ACRIN 6657 trial[J]. AJR Am J Roentgenol, 2018, 210(6): 1376-1385. DOI: 10.2214/AJR.17.18323.
[7]
Chinese Anti-Cancer Association, Committee of Breast Cancer Society. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013
[8]
HYLTON N M, BLUME J D, BERNREUTER W K, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy: results from ACRIN 6657/I-SPY TRIAL[J]. Radiology, 2012, 263(3): 663-672. DOI: 10.1148/radiol.12110748.
[9]
LI W, NEWITT D C, GIBBS J, et al. Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL[J/OL]. NPJ Breast Cancer, 2020, 6(1): 63 [2022-07-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695723. DOI: 10.1038/s41523-020-00203-7.
[10]
REIG B, HEACOCK L, LEWIN A, et al. Role of MRI to assess response to neoadjuvant therapy for breast cancer[J/OL]. J Magn Reson Imaging, 2020, 52(6) [2022-07-10]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.27145. DOI: 10.1002/jmri.27145.
[11]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[12]
GU Y L, PAN S M, REN J, et al. Role of magnetic resonance imaging in detection of pathologic complete remission in breast cancer patients treated with neoadjuvant chemotherapy: a meta-analysis[J]. Clin Breast Cancer, 2017, 17(4): 245-255. DOI: 10.1016/j.clbc.2016.12.010.
[13]
WU L M, HU J N, GU H Y, et al. Can diffusion-weighted MR imaging and contrast-enhanced MR imaging precisely evaluate and predict pathological response to neoadjuvant chemotherapy in patients with breast cancer?[J]. Breast Cancer Res Treat, 2012, 135(1): 17-28. DOI: 10.1007/s10549-012-2033-5.
[14]
DRISIS S, FLAMEN P, IGNATIADIS M, et al. Total choline quantification measured by 1H MR spectroscopy as early predictor of response after neoadjuvant treatment for locally advanced breast cancer: the impact of immunohistochemical status[J]. J Magn Reson Imaging, 2018, 48(4): 982-993. DOI: 10.1002/jmri.26042.
[15]
TOZAKI M, KOBAYASHI T, UNO S, et al. Breast-conserving surgery after chemotherapy: value of MDCT for determining tumor distribution and shrinkage pattern[J]. AJR Am J Roentgenol, 2006, 186(2): 431-439. DOI: 10.2214/ajr.04.1520.
[16]
CHOI W J, KIM H H, CHA J H, et al. Complete response on MR imaging after neoadjuvant chemotherapy in breast cancer patients: factors of radiologic-pathologic discordance[J]. Eur J Radiol, 2019, 118: 114-121. DOI: 10.1016/j.ejrad.2019.06.017.
[17]
SHAO Z Z, WANG J, LIU P F, et al. Comparative study of breast cancer shrinkage modes after neoadjuvant chemotherapy and corresponding morphological and molecular biological characteristics[J]. Int J Med Radiol, 2018, 41(2)138-141, 202. DOI: 10.19300/j.2018.L4405
[18]
BALLESIO L, GIGLI S, DI PASTENA F, et al. Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: correlation with tumor biological subtypes and pathological response after therapy[J/OL]. Tumour Biol, 2017, 39(3): 1010428317694540 [2022-07-10]. https://doi.org/10.1177/1010428317694540. DOI: 10.1177/1010428317694540.
[19]
CURIGLIANO G, BURSTEIN H J, WINER E P, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017[J/OL]. Ann Oncol, 2019, 30(7): 1181 [2022-07-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246241. DOI: 10.1093/annonc/mdy537.
[20]
WAKS A G, WINER E P. Breast cancer treatment[J/OL]. JAMA, 2019, 321(3): 316 [2022-07-10]. https://doi.org/10.1001/jama.2018.20751. DOI: 10.1001/jama.2018.20751.
[21]
CHEN Y S, SUN S J, YU X J, et al. 3.0 T MRI features of breast cancer in different molecular types[J]. Chin J Magn Reson Imaging, 2021, 12(2)24-28. DOI: 10.12015/issn.1674-8034.2021.02.006.
[22]
WEN J, KANG W Y, DENG W M, et al. MR manifestation of different molecular subtypes of breast cancer[J]. Chin J Oncol Prev Treat, 2019, 11(3): 257-261. DOI: 10.3969/j.issn.1674-5671.2019.03.14.
[23]
GIGLI S, AMABILE M I, DAVID E, et al. Morphological and semiquantitative kinetic analysis on dynamic contrast enhanced MRI in triple negative breast cancer patients[J]. Acad Radiol, 2019, 26(5): 620-625. DOI: 10.1016/j.acra.2018.06.014.
[24]
LI M M, LIU H, XU B, et al. Analysis of tumor regression models in different molecular subtypes of breast cancer on the base of MRI[J]. Chin J Cancer Prev Treat, 2016, 23(15): 1016-1020. DOI: 10.3760/cma.j.issn.0376-2491.2013.20.015
[25]
XU M, MA J, GE C Y, et al. Value of different tumor shrinking patterns on MRI in evaluating the efficacy of neoadjuvant chemotherapy for breast cancer[J]. Radiol Pract, 2020, 35(4)497-503. DOI: 10.13609/j.cnki.1000-0313.2020.04.019
[26]
REIG B, LEWIN A A, DU L D, et al. Breast MRI for evaluation of response to neoadjuvant therapy[J]. Radiographics, 2021, 41(3): 665-679. DOI: 10.1148/rg.2021200134.
[27]
HUANG Y H, CHEN W B, ZHANG X L, et al. Prediction of tumor shrinkage pattern to neoadjuvant chemotherapy using a multiparametric MRI-based machine learning model in patients with breast cancer[J/OL]. Front Bioeng Biotechnol, 2021, 9: 662749 [2022-07-10]. https://doi.org/10.3389/fbioe.2021.662749. DOI: 10.3389/fbioe.2021.662749.
[28]
ZHUANG X S, CHEN C, LIU Z Y. Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy[J/OL]. Transl Oncol, 2020, 13(11): 100831 [2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/32759037/. DOI: 10.1016/j.tranon.2020.100831.
[29]
KIM J, HAN B K, KO E Y, et al. Prediction of pathologic complete response on MRI in patients with breast cancer receiving neoadjuvant chemotherapy according to molecular subtypes[J]. Eur Radiol, 2022, 32(6): 4056-4066. DOI: 10.1007/s00330-021-08461-0.
[30]
WEBER J J, JOCHELSON M S, EATON A, et al. MRI and prediction of pathologic complete response in the breast and axilla after neoadjuvant chemotherapy for breast cancer[J]. J Am Coll Surg, 2017, 225(6): 740-746. DOI: 10.1016/j.jamcollsurg.2017.08.027.
[31]
GAMPENRIEDER S P, PEER A, WEISMANN C, et al. Radiologic complete response (rCR) in contrast-enhanced magnetic resonance imaging (CE-MRI) after neoadjuvant chemotherapy for early breast cancer predicts recurrence-free survival but not pathologic complete response (pCR)[J]. Breast Cancer Res, 2019, 21(1): 1-11. DOI: 10.1186/s13058-018-1091-y.
[32]
BOUZÓN A, IGLESIAS Á, ACEA B, et al. Evaluation of MRI accuracy after primary systemic therapy in breast cancer patients considering tumor biology: optimizing the surgical planning[J]. Radiol Oncol, 2019, 53(2): 171-177. DOI: 10.2478/raon-2019-0023.
[33]
DRISIS S, METENS T, IGNATIADIS M, et al. Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy[J]. Eur Radiol, 2016, 26(5): 1474-1484. DOI: 10.1007/s00330-015-3948-0.
[34]
LI W, NEWITT D C, WILMES L J, et al. Additive value of diffusion-weighted MRI in the I-SPY 2 TRIAL[J]. J Magn Reson Imaging, 2019, 50(6): 1742-1753. DOI: 10.1002/jmri.26770.
[35]
SANTAMARÍA G, BARGALLÓ X, FERNÁNDEZ P L, et al. Neoadjuvant systemic therapy in breast cancer: association of contrast-enhanced MR imaging findings, diffusion-weighted imaging findings, and tumor subtype with tumor response[J]. Radiology, 2017, 283(3): 663-672. DOI: 10.1148/radiol.2016160176.
[36]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[37]
CHOUDHERY S, GOMEZ-CARDONA D, FAVAZZA C P, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J]. Acad Radiol, 2022, 29(Suppl 1): S145-S154. DOI: 10.1016/j.acra.2020.10.020.
[38]
CHAMMING'S F, UENO Y, FERRÉ R, et al. Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy[J]. Radiology, 2018, 286(2): 412-420. DOI: 10.1148/radiol.2017170143.
[39]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2022-07-10]. https://doi.org/10.1186/s13058-017-0846-1. DOI: 10.1186/s13058-017-0862-1.
[40]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2022-07-10]. https://doi.org/10.1001/jamanetworkopen.2019.2561. DOI: 10.1001/jamanetworkopen.2019.2561.
[41]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[42]
LIU T, SHENG X L, GAO Y, et al. Application progress of MR radiomics in neoadjuvant chemotherapy for breast cancer[J]. Chin J Magn Reson Imaging, 2021, 12(7): 117-120. DOI: 10.12015/issn.1674-8034.2021.07.028
[43]
XIONG Q Q, ZHOU X Z, LIU Z Y, et al. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J]. Clin Transl Oncol, 2020, 22(1): 50-59. DOI: 10.1007/s12094-019-02109-8.
[44]
REIG B, HEACOCK L, GERAS K J, et al. Machine learning in breast MRI[J]. J Magn Reson Imaging, 2020, 52(4): 998-1018. DOI: 10.1002/jmri.26852.
[45]
SATAKE H, ISHIGAKI S, ITO R, et al. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol Med, 2022, 127(1): 39-56. DOI: 10.1007/s11547-021-01423-y.
[46]
CAIN E H, SAHA A, HAROWICZ M R, et al. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set[J]. Breast Cancer Res Treat, 2019, 173(2): 455-463. DOI: 10.1007/s10549-018-4990-9.
[47]
CABALLO M, SANDERINK W B G, HAN L Y, et al. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273.
[48]
BITENCOURT A G V, GIBBS P, ROSSI SACCARELLI C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J]. EBioMedicine, 2020, 61: 103042. DOI: 10.1016/j.ebiom.2020.103042.

PREV Research progress of multiparametric MRI radiomics in breast cancer
NEXT MRI features and research progress of proliferative hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn