Share:
Share this content in WeChat
X
Review
Advances in multiparametric magnetic resonance imaging radiomics in the management of prostate cancer
WU Chunmei  LI Siqi  YANG Cunxia  YIN Xiaoping 

Cite this article as: WU C M, LI S Q, YANG C X, et al. Advances in multiparametric magnetic resonance imaging radiomics in the management of prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(6): 166-170, 191. DOI:10.12015/issn.1674-8034.2023.06.030.


[Abstract] Prostate cancer (PCa) is one of the more common malignancies in men and the ability to diagnose it early is key to its prognosis. Multi-parametric magnetic resonance imaging (mpMRI) is a major tool for detecting PCa detection and predicting risk stratification, including screening, improving diagnostic accuracy, risk stratification, guiding treatment and post-treatment assessment. The development of radiomics has provided a new way of thinking to the various current traditional examination modalities, through automated methods to extract quantitative imaging features and analysis of huge data volumes to provide information for clinical diagnosis and decision-making for PCa patients. The application of mpMRI radiomics in PCa not only enables automated localization of the disease, but also provides a non-invasive solution to evaluate PCa from tumor biology to genetic level. Clinical value of mpMRI based radiomics correlation studies for non-invasive diagnosis, aggressiveness assessment, progression detection, genomic analysis and targeted drug efficacy in PCa. This article reviews the progress of mpMRI radiomics in the diagnosis, treatment and prediction of risk, aggressiveness and prognosis of PCa.
[Keywords] prostate cancer;multi-parametric magnetic resonance imaging;radiomics;radiogenomics;diffusion weighted imaging;Prostate Image Reporting and Data System;precision treatment

WU Chunmei1, 2, 3   LI Siqi1, 2, 3   YANG Cunxia1, 2, 3   YIN Xiaoping1, 3*  

1 CT-MRI Unit, Affiliated Hospital of Hebei University, Baoding 071000, China

2 College of Clinical Medical of Hebei University, Baoding 071000, China

3 Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding 071000, China

Corresponding author: Yin XP, E-mail: yinxiaoping78@ sina.com

Conflicts of interest   None.

Received  2022-12-04
Accepted  2023-04-07
DOI: 10.12015/issn.1674-8034.2023.06.030
Cite this article as: WU C M, LI S Q, YANG C X, et al. Advances in multiparametric magnetic resonance imaging radiomics in the management of prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(6): 166-170, 191. DOI:10.12015/issn.1674-8034.2023.06.030.

[1]
BRAY F, LAVERSANNE M, WEIDERPASS E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide[J]. Cancer, 2021, 127(16): 3029-3030. DOI: 10.1002/cncr.33587.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
WANG G C, ZHAO D, SPRING D J, et al. Genetics and biology of prostate cancer[J]. Genes Dev, 2018, 32(17/18): 1105-1140. DOI: 10.1101/gad.315739.118.
[4]
WEINREB J C, BARENTSZ J O, CHOYKE P L, et al. PI-RADS prostate imaging-reporting and data system: 2015, version 2[J]. Eur Urol, 2016, 69(1): 16-40. DOI: 10.1016/j.eururo.2015.08.052.
[5]
NATIV, OMRI, M D, et al. The additive value of mpMRI on prostate cancer detection: comparison between patients with and without a suspicious digital rectal examination (DRE)[J/OL]. Urol Oncol Semin Orig Investig, 2021, 39(10): 728.e7-728.e11 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/33454199/. DOI: 10.1016/j.urolonc.2020.12.029.
[6]
LENZO N P, MEYRICK D, TURNER J H. Review of Gallium-68 PSMA PET/CT imaging in the management of prostate cancer[J/OL]. Diagnostics (Basel), 2018, 8(1): 16 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/29439481/. DOI: 10.3390/diagnostics8010016.
[7]
THOMPSON I M, PAULER D K, GOODMAN P J, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level 4.0 ng per milliliter[J]. N Engl J Med, 2004, 350(22): 2239-2246. DOI: 10.1056/NEJMoa031918.
[8]
ROGERS W, THULASI SEETHA S, REFAEE T A G, et al. Radiomics: from qualitative to quantitative imaging[J/OL]. Br J Radiol, 2020, 93(1108): 20190948 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/32101448/. DOI: 10.1259/bjr.20190948.
[9]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[10]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[11]
AERTS H J, VELAZQUEZ E R, LEIJENAAR R T, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J/OL]. Nat Commun, 2014, 5: 4006 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/24892406/. DOI: 10.1038/ncomms5006.
[12]
LEE H, HWANG S I, LEE H J, et al. Diagnostic performance of diffusion-weighted imaging for prostate cancer: peripheral zone versus transition zone[J/OL]. PLoS One, 2018, 13(6): e0199636 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/29933396/. DOI: 10.1371/journal.pone.0199636.
[13]
CHIAM K, CARLE C, HUGHES S, et al. Use of multiparametric magnetic resonance imaging (mpMRI) in active surveillance for low-risk prostate cancer: a scoping review on the benefits and harm of mpMRI in different biopsy scenarios[J]. Prostate Cancer Prostatic Dis, 2021, 24(3): 662-673. DOI: 10.1038/s41391-021-00320-9.
[14]
FUJIHARA A, IWATA T, SHAKIR A, et al. Multiparametric magnetic resonance imaging facilitates reclassification during active surveillance for prostate cancer[J]. BJU Int, 2021, 127(6): 712-721. DOI: 10.1111/bju.15272.
[15]
VARGAS H A, AKIN O, FRANIEL T, et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness[J]. Radiology, 2011, 259(3): 775-784. DOI: 10.1148/radiol.11102066.
[16]
WU R C, LEBASTCHI A H, HADASCHIK B A, et al. Role of MRI for the detection of prostate cancer[J]. World J Urol, 2021, 39(3): 637-649. DOI: 10.1007/s00345-020-03530-3.
[17]
SAITO S, KOYAMA Y, UEDA J, et al. Relationship between apparent diffusion coefficient distribution and cancer grade in prostate cancer and benign prostatic hyperplasia[J/OL]. Diagnostics (Basel), 2022, 12(2): 525 [2022-12-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871382/. DOI: 10.3390/diagnostics12020525.
[18]
DEMIREL H C, DAVIS J W. Multiparametric magnetic resonance imaging: overview of the technique, clinical applications in prostate biopsy and future directions[J]. Turk J Urol, 2018, 44(2): 93-102. DOI: 10.5152/tud.2018.56056.
[19]
HAIDER M A, YAO X, LOBLAW A, et al. Multiparametric magnetic resonance imaging in the diagnosis of prostate cancer: a systematic review[J]. Clin Oncol (R Coll Radiol), 2016, 28(9): 550-567. DOI: 10.1016/j.clon.2016.05.003.
[20]
WOŹNICKI P, WESTHOFF N, HUBER T, et al. Multiparametric MRI for prostate cancer characterization: combined use of radiomics model with PI-RADS and clinical parameters[J/OL]. Cancers, 2020, 12(7): 1767 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/32630787/. DOI: 10.3390/cancers12071767.
[21]
ZHAO Y Y, FANG C, WU S L, et al. Prediction and risk assessment of benign and malignant prostate lesions based on Bp-MRI radiomics[J]. Chin J Magn Reson Imaging, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
[22]
CASTILLO T J M, ARIF M, STARMANS M P A, et al. Classification of clinically significant prostate cancer on multi-parametric MRI: a validation study comparing deep learning and radiomics[J/OL]. Cancers, 2021, 14(1): 12 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/35008177/. DOI: 10.3390/cancers14010012.
[23]
ALFANO R, BAUMAN G S, GOMEZ J A, et al. Prostate cancer classification using radiomics and machine learning on mp-MRI validated using co-registered histology[J/OL]. Eur J Radiol, 2022, 156: 110494 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/36095953/. DOI: 10.1016/j.ejrad.2022.110494.
[24]
MAKOWSKI M R, BRESSEM K K, FRANZ L, et al. De novo radiomics approach using image augmentation and features from T1 mapping to predict gleason scores in prostate cancer[J]. Invest Radiol, 2021, 56(10): 661-668. DOI: 10.1097/RLI.0000000000000788.
[25]
BLEKER J, KWEE T C, DIERCKX R A J O, et al. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer[J]. Eur Radiol, 2020, 30(3): 1313-1324. DOI: 10.1007/s00330-019-06488-y.
[26]
JAMSHIDI G, ABBASIAN ARDAKANI A, GHAFOORI M, et al. Radiomics-based machine-learning method to diagnose prostate cancer using mp-MRI: a comparison between conventional and fused models[J]. MAGMA, 2023, 36(1): 55-64. DOI: 10.1007/s10334-022-01037-z.
[27]
URAKAMI A, ARIMURA H, TAKAYAMA Y, et al. Stratification of prostate cancer patients into low- and high-grade groups using multiparametric magnetic resonance radiomics with dynamic contrast-enhanced image joint histograms[J]. Prostate, 2022, 82(3): 330-344. DOI: 10.1002/pros.24278.
[28]
BORKENHAGEN J F, EASTWOOD D, KILARI D, et al. Digital rectal examination remains a key prognostic tool for prostate cancer: a national cancer database review[J]. J Natl Compr Canc Netw, 2019, 17(7): 829-837. DOI: 10.6004/jnccn.2018.7278.
[29]
HALPERN J A, OROMENDIA C, SHOAG J E, et al. Use of digital rectal examination as an adjunct to prostate specific antigen in the detection of clinically significant prostate cancer[J]. J Urol, 2018, 199(4): 947-953. DOI: 10.1016/j.juro.2017.10.021.
[30]
CATALONA W J, SMITH D S, RATLIFF T L, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer[J]. N Engl J Med, 1991, 324(17): 1156-1161. DOI: 10.1056/NEJM199104253241702.
[31]
HAYTHORN M R, ABLIN R J. Prostate-specific antigen testing across the spectrum of prostate cancer[J]. Biomark Med, 2011, 5(4): 515-526. DOI: 10.2217/bmm.11.53.
[32]
RODRIGUES A, SANTINHA J, GALVÃO B, et al. Prediction of prostate cancer disease aggressiveness using Bi-parametric MRI radiomics[J/OL]. Cancers, 2021, 13(23): 6065 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/34885175/. DOI: 10.3390/cancers13236065.
[33]
ZHANG H, LI X L, ZHANG Y X, et al. Diagnostic nomogram based on intralesional and perilesional radiomics features and clinical factors of clinically significant prostate cancer[J]. J Magn Reson Imaging, 2021, 53(5): 1550-1558. DOI: 10.1002/jmri.27486.
[34]
ZHAO S Y, LIU Z Z, LU S, et al. Application of apparent diffusion coefficient-based radiomics analysis in differential diagnosis of Gleason grade group of prostate cancer[J]. J Clin Radiol, 2022, 41(2): 298-302. DOI: 10.13437/j.cnki.jcr.2022.02.024.
[35]
SHIN S, SAITO E, SAWADA N, et al. Dietary patterns and prostate cancer risk in Japanese: the Japan Public Health Center-based Prospective Study (JPHC Study)[J]. Cancer Causes Control, 2018, 29(6): 589-600. DOI: 10.1007/s10552-018-1030-3.
[36]
XIE D, XU F Y, ZHU W C, et al. Delta radiomics model for the prediction of progression-free survival time in advanced non-small-cell lung cancer patients after immunotherapy[J/OL]. Front Oncol, 2022, 12: 990608 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/36276082/. DOI: 10.3389/fonc.2022.990608.
[37]
ZHU J, SHEN F, YUAN Y, et al. The value of MRI radiomics for evaluation of pathological complete response of rectal cancer after neoadjuvant treatment[J]. Radiol Pract, 2022, 37(4): 426-431. DOI: 10.13609/j.cnki.1000-0313.2022.04.003.
[38]
YU Y L, WANG X, ZHA X M, et al. Whole volume ROI radiomics analysis of mass - like breast cancer based on pretreatment ADC images for the prediction of pathological complete response to neoad juvant chemotherapy[J]. Radiol Pract, 2022, 37(8): 987-994. DOI: 10.13609/j.cnki.1000-0313.2022.08.012.
[39]
ZHONG Q Z, LONG L H, LIU A, et al. Radiomics of multiparametric MRI to predict biochemical recurrence of localized prostate cancer after radiation therapy[J/OL]. Front Oncol, 2020, 10: 731 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/32477949/. DOI: 10.3389/fonc.2020.00731.
[40]
JIA Y S, QUAN S, REN J L, et al. MRI radiomics predicts progression-free survival in prostate cancer[J/OL]. Front Oncol, 2022, 12: 974257 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/36110963/. DOI: 10.3389/fonc.2022.974257.
[41]
XUE C, YUAN J, POON D M, et al. Reliability of MRI radiomics features in MR-guided radiotherapy for prostate cancer: Repeatability, reproducibility, and within-subject agreement[J]. Med Phys, 2021, 48(11): 6976-6986. DOI: 10.1002/mp.15232.
[42]
SHI Y, WAHLE E, DU Q, et al. Associations between statin/Omega3 usage and MRI-based radiomics signatures in prostate cancer[J/OL]. Diagnostics (Basel), 2021, 11(1): 85 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/33430275/. DOI: 10.3390/diagnostics11010085.
[43]
TSANG Y M, VIGNARAJAH D, MCWILLIAM A, et al. A pilot study on dosimetric and radiomics analysis of urethral strictures following HDR brachytherapy as monotherapy for localized prostate cancer[J/OL]. Br J Radiol, 2020, 93(1106): 20190760 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/31778319/. DOI: 10.1259/bjr.20190760.
[44]
LO GULLO R, DAIMIEL I, MORRIS E A, et al. Combining molecular and imaging metrics in cancer: radiogenomics[J/OL]. Insights Imaging, 2020, 11(1): 1 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/31901171/. DOI: 10.1186/s13244-019-0795-6.
[45]
MAGGI M, DEL GIUDICE F, FALAGARIO U G, et al. SelectMDx and multiparametric magnetic resonance imaging of the prostate for men undergoing primary prostate biopsy: a prospective assessment in a multi-institutional study[J/OL]. Cancers, 2021, 13(9): 2047 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/33922626/. DOI: 10.3390/cancers13092047.
[46]
HAFFNER M C, ZWART W, ROUDIER M P, et al. Genomic and phenotypic heterogeneity in prostate cancer[J]. Nat Rev Urol, 2021, 18(2): 79-92. DOI: 10.1038/s41585-020-00400-w.
[47]
ERICKSON A, HAYES A, RAJAKUMAR T, et al. A systematic review of prostate cancer heterogeneity: understanding the clonal ancestry of multifocal disease[J]. Eur Urol Oncol, 2021, 4(3): 358-369. DOI: 10.1016/j.euo.2021.02.008.
[48]
PANUNZIO A, TAFURI A, PRINCIOTTA A, et al. Omics in urology: an overview on concepts, current status and future perspectives[J]. Urologia, 2021, 88(4): 270-279. DOI: 10.1177/03915603211022960.
[49]
RADTKE J P, TAKHAR M, BONEKAMP D, et al. Transcriptome wide analysis of magnetic resonance imaging-targeted biopsy and matching surgical specimens from high-risk prostate cancer patients treated with radical prostatectomy: the target must be hit[J]. Eur Urol Focus, 2018, 4(4): 540-546. DOI: 10.1016/j.euf.2017.01.005.
[50]
ZAMBOGLOU C, BETTERMANN A S, GRATZKE C, et al. Uncovering the invisible-prevalence, characteristics, and radiomics feature-based detection of visually undetectable intraprostatic tumor lesions in 68GaPSMA-11 PET images of patients with primary prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2021, 48(6): 1987-1997. DOI: 10.1007/s00259-020-05111-3.
[51]
FELICIANI G, CELLI M, FERRONI F, et al. Radiomics analysis on 68Ga-PSMA-11 PET and MRI-ADC for the prediction of prostate cancer ISUP grades: preliminary results of the BIOPSTAGE trial[J/OL]. Cancers, 2022, 14(8): 1888 [2022-12-03]. https://pubmed.ncbi.nlm.nih.gov/35454793/. DOI: 10.3390/cancers14081888.
[52]
OU W, LEI J H, LI M H, et al. Ultrasound-based radiomics score for pre-biopsy prediction of prostate cancer to reduce unnecessary biopsies[J]. Prostate, 2023, 83(1): 109-118. DOI: 10.1002/pros.24442.

PREV MRI features and research progress of proliferative hepatocellular carcinoma
NEXT Research progress of radiomics based on multi-parameter MRI in lymphatic space invasion of endometrial cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn