Share:
Share this content in WeChat
X
Review
Radiomics predicts the heterogeneity and prognosis of high-grade serous ovarian cancer
HU He  ZHANG Tong  YANG Jiao  GAO Kaihua  WU Hui 

Cite this article as: HU H, ZHANG T, YANG J, et al. Radiomics predicts the heterogeneity and prognosis of high-grade serous ovarian cancer[J]. Chin J Magn Reson Imaging, 2023, 14(6): 176-181. DOI:10.12015/issn.1674-8034.2023.06.032.


[Abstract] Ovarian cancer represents the most lethal gynecological malignancy. Although treatment options for ovarian cancer has been matured, patient survival and prognosis have only improved slightly in the recent years. Many studies have hypothesized that this is because tumor heterogeneity determines the different patient response to treatment and prognosis. Actually, CT and MRI images contain a large amount of tumor heterogeneity information that is difficult to identify with the naked eye, which can reflect the prognosis of tumors. Therefore, some scholars have proposed that radiomics be used to extract quantitative features to assess tumor heterogeneity and then analyze and model according to specific clinical problems. This article reviews the application of radiomics in the preoperative prediction of high-grade serous ovarian cancer heterogeneity and survival, lymph node or peritoneal metastasis, postoperative tumor residual, postoperative response to chemotherapy and platinum resistance. It found that the lack of standardization, poor reproducibility and few prospective samples in current studies. In addition, the association between radiomics and high-grade serous ovarian cancer heterogeneity and prognosis-related genomics has good research prospects. It is hoped that it can provide more new directions for future research.
[Keywords] high-grade serous ovarian cancer;radiomics;magnetic resonance imaging;heterogenicity;metastasis;prognosis

HU He   ZHANG Tong   YANG Jiao   GAO Kaihua   WU Hui*  

Medical Imaging Department, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: Wu H, E-mail: terrywuhui@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2021MS08026); the Open Fund of the Key Laboratory of the Affiliated Hospital of Inner Mongolia Medical University (No. 2022NYFYSY006).
Received  2022-11-23
Accepted  2023-04-07
DOI: 10.12015/issn.1674-8034.2023.06.032
Cite this article as: HU H, ZHANG T, YANG J, et al. Radiomics predicts the heterogeneity and prognosis of high-grade serous ovarian cancer[J]. Chin J Magn Reson Imaging, 2023, 14(6): 176-181. DOI:10.12015/issn.1674-8034.2023.06.032.

[1]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2]
KROEGER P T, DRAPKIN R. Pathogenesis and heterogeneity of ovarian cancer[J]. Curr Opin Obstet Gynecol, 2017, 29(1): 26-34. DOI: 10.1097/GCO.0000000000000340.
[3]
DALY M B, PAL T, BERRY M P, et al. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(1): 77-102. DOI: 10.6004/jnccn.2021.0001.
[4]
BODALAL Z, TREBESCHI S, NGUYEN-KIM T D L, et al. Radiogenomics: bridging imaging and genomics[J]. Abdom Radiol (NY), 2019, 44(6): 1960-1984. DOI: 10.1007/s00261-019-02028-w.
[5]
LIN G, KESHARI K R, PARK J M. Cancer metabolism and tumor heterogeneity: imaging perspectives using MR imaging and spectroscopy[J/OL]. Contrast Media Mol Imaging, 2017, 2017: 6053879 [2022-05-20]. https://www.hindawi.com/journals/cmmi/2017/6053879. DOI: 10.1155/2017/6053879.
[6]
FUMAGALLI C, RAPPA A, CASADIO C, et al. Next-generation sequencing-based BRCA testing on cytological specimens from ovarian cancer ascites reveals high concordance with tumour tissue analysis[J]. J Clin Pathol, 2020, 73(3): 168-171. DOI: 10.1136/jclinpath-2019-206127.
[7]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[8]
NOUGARET S, LAKHMAN Y, MOLINARI N, et al. CT features of ovarian tumors: defining key differences between serous borderline tumors and low-grade serous carcinomas[J]. AJR Am J Roentgenol, 2018, 210(4): 918-926. DOI: 10.2214/AJR.17.18254.
[9]
CHUI M H, CHANG J C, ZHANG Y M, et al. Spectrum of BRAF mutations and gene rearrangements in ovarian serous carcinoma[J/OL]. JCO Precis Oncol, 2021, 5: PO.21.00055 [2022-05-23]. https://ascopubs.org/doi/10.1200/PO.21.00055. DOI: 10.1200/PO.21.00055.
[10]
KERMANY D S, GOLDBAUM M, CAI W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J/OL]. Cell, 2018, 172(5): 1122-1131.e9 [2022-05-26]. https://www.sciencedirect.com/science/article/pii/S0092867418301545?via%3Dihub. DOI: 10.1016/j.cell.2018.02.010.
[11]
NOUGARET S, TARDIEU M, VARGAS H A, et al. Ovarian cancer: an update on imaging in the era of radiomics[J]. Diagn Interv Imaging, 2019, 100(10): 647-655. DOI: 10.1016/j.diii.2018.11.007.
[12]
NOUGARET S, MCCAGUE C, TIBERMACINE H, et al. Radiomics and radiogenomics in ovarian cancer: a literature review[J]. Abdom Radiol, 2021, 46(6): 2308-2322. DOI: 10.1007/s00261-020-02820-z.
[13]
RIZZO S, MANGANARO L, DOLCIAMI M, et al. Computed tomography based radiomics as a predictor of survival in ovarian cancer patients: a systematic review[J/OL]. Cancers (Basel), 2021, 13(3): 573 [2022-05-23]. https://www.mdpi.com/2072-6694/13/3/573. DOI: 10.3390/cancers13030573.
[14]
REN J, HE Y L, XUE H D. Research progress of imageology in ovarian cancer[J]. Chin J Med Imaging Technol, 2021, 37(5): 777-780. DOI: 10.13929/j.issn.1003-3289.2021.05.037.
[15]
LIU C L, YUAN R H, MAO T L. The molecular landscape influencing prognoses of epithelial ovarian cancer[J/OL]. Biomolecules, 2021, 11(7): 998 [2022-05-22]. https://www.mdpi.com/2218-273X/11/7/998. DOI: 10.3390/biom11070998.
[16]
IMYANITOV E, SOKOLENKO A. Mechanisms of acquired resistance of BRCA1/2-driven tumors to platinum compounds and PARP inhibitors[J]. World J Clin Oncol, 2021, 12(7): 544-556. DOI: 10.5306/wjco.v12.i7.544.
[17]
XIE W W, SUN H Z, LI X D, et al. Ovarian cancer: epigenetics, drug resistance, and progression[J/OL]. Cancer Cell Int, 2021, 21(1): 434 [2022-05-26]. https://cancerci.biomedcentral.com/articles/10.1186/s12935-021-02136-y. DOI: 10.1186/s12935-021-02136-y.
[18]
VARGAS H A, HUANG E P, LAKHMAN Y, et al. Radiogenomics of high-grade serous ovarian cancer: multireader multi-institutional study from the cancer genome atlas ovarian cancer imaging research group[J]. Radiology, 2017, 285(2): 482-492. DOI: 10.1148/radiol.2017161870.
[19]
NOUGARET S, LAKHMAN Y, GÖNEN M, et al. High-grade serous ovarian cancer: associations between BRCA mutation status, CT imaging phenotypes, and clinical outcomes[J]. Radiology, 2017, 285(2): 472-481. DOI: 10.1148/radiol.2017161697.
[20]
LI M R. Clinical application value of enhanced CT imaging and 3D texture analysis in FIGO staging and BRCA gene mutation of epithelial ovarian cancer[D]. Hefei: Anhui Medical University, 2022. DOI: 10.26921/d.cnki.ganyu.2022.001286.
[21]
KALACHAND R D, STORDAL B, MADDEN S, et al. BRCA1 promoter methylation and clinical outcomes in ovarian cancer: an individual patient data meta-analysis[J]. J Natl Cancer Inst, 2020, 112(12): 1190-1203. DOI: 10.1093/jnci/djaa070.
[22]
SHAO F P, DUAN Y Y, ZHAO Y H, et al. PARP inhibitors in breast and ovarian cancer with BRCA mutations: a meta-analysis of survival[J]. Aging (Albany NY), 2021, 13(6): 8975-8988. DOI: 10.18632/aging.202724.
[23]
MEIER A, VEERARAGHAVAN H, NOUGARET S, et al. Association between CT-texture-derived tumor heterogeneity, outcomes, and BRCA mutation status in patients with high-grade serous ovarian cancer[J]. Abdom Radiol (NY), 2019, 44(6): 2040-2047. DOI: 10.1007/s00261-018-1840-5.
[24]
GERLINGER M, ROWAN A J, HORSWELL S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366(10): 883-892. DOI: 10.1056/NEJMoa1113205.
[25]
LIU M Z, GE Y Q, LI M R, et al. Prediction of BRCA gene mutation status in epithelial ovarian cancer by radiomics models based on 2D and 3D CT images[J/OL]. BMC Med Imaging, 2021, 21(1): 180 [2022-09-27]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-021-00711-3. DOI: 10.1186/s12880-021-00711-3.
[26]
AVESANI G, TRAN H E, CAMMARATA G, et al. CT-based radiomics and deep learning for BRCA mutation and progression-free survival prediction in ovarian cancer using a multicentric dataset[J/OL]. Cancers (Basel), 2022, 14(11): 2739 [2022-09-27]. https://www.mdpi.com/2072-6694/14/11/2739. DOI: 10.3390/cancers14112739.
[27]
VARGAS H A, VEERARAGHAVAN H, MICCO M, et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome[J]. Eur Radiol, 2017, 27(9): 3991-4001. DOI: 10.1007/s00330-017-4779-y.
[28]
PATCH A M, CHRISTIE E L, ETEMADMOGHADAM D, et al. Whole-genome characterization of chemoresistant ovarian cancer[J]. Nature, 2015, 521(7553): 489-494. DOI: 10.1038/nature14410.
[29]
WANG F, WANG Y X, ZHOU Y, et al. Apparent diffusion coefficient histogram analysis for assessing tumor staging and detection of lymph node metastasis in epithelial ovarian cancer: correlation with p53 and ki-67 expression[J]. Mol Imaging Biol, 2019, 21(4): 731-739. DOI: 10.1007/s11307-018-1295-7.
[30]
LU H N, ARSHAD M, THORNTON A, et al. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer[J/OL]. Nat Commun, 2019, 10(1): 764 [2023-03-06]. https://www.nature.com/articles/s41467-019-08718-9. DOI: 10.1038/s41467-019-08718-9.
[31]
FOTOPOULOU C, ROCKALL A, LU H N, et al. Validation analysis of the novel imaging-based prognostic radiomic signature in patients undergoing primary surgery for advanced high-grade serous ovarian cancer (HGSOC)[J]. Br J Cancer, 2022, 126(7): 1047-1054. DOI: 10.1038/s41416-021-01662-w.
[32]
WAN S, ZHOU T F, CHE R H, et al. CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer[J/OL]. J Ovarian Res, 2023, 16(1): 1 [2023-03-06]. https://ovarianresearch.biomedcentral.com/articles/10.1186/s13048-022-01089-8. DOI: 10.1186/s13048-022-01089-8.
[33]
WANG J Y, PENG C, DAI W T, et al. Exploring tumor immune microenvironment and its associations with molecular characteristics in melanoma[J/OL]. Front Oncol, 2022, 12: 821578 [2022-09-27]. https://www.frontiersin.org/articles/10.3389/fonc.2022.821578. DOI: 10.3389/fonc.2022.821578.
[34]
BAERT T, FERRERO A, SEHOULI J, et al. The systemic treatment of recurrent ovarian cancer revisited[J]. Ann Oncol, 2021, 32(6): 710-725. DOI: 10.1016/j.annonc.2021.02.015.
[35]
WEI W, LIU Z Y, RONG Y, et al. A computed tomography-based radiomic prognostic marker of advanced high-grade serous ovarian cancer recurrence: a multicenter study[J/OL]. Front Oncol, 2019, 9: 255 [2022-09-29]. https://www.frontiersin.org/articles/10.3389/fonc.2019.00255. DOI: 10.3389/fonc.2019.00255.
[36]
HU J Q, WANG Z W, ZUO R C, et al. Development of survival predictors for high-grade serous ovarian cancer based on stable radiomic features from computed tomography images[J/OL]. iScience, 2022, 25(7): 104628 [2022-09-29]. https://www.sciencedirect.com/science/article/pii/S2589004222009002?via%3Dihub. DOI: 10.1016/j.isci.2022.104628.
[37]
WU Y J, JIANG W Y, FU L Y, et al. Intra- and peritumoral radiomics for predicting early recurrence in patients with high-grade serous ovarian cancer[J]. Abdom Radiol (NY), 2023, 48(2): 733-743. DOI: 10.1007/s00261-022-03717-9.
[38]
ZHANG H, MAO Y F, CHEN X J, et al. Magnetic resonance imaging radiomics in categorizing ovarian masses and predicting clinical outcome: a preliminary study[J]. Eur Radiol, 2019, 29(7): 3358-3371. DOI: 10.1007/s00330-019-06124-9.
[39]
WANG T P, WANG H J, WANG Y D, et al. MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols[J/OL]. J Ovarian Res, 2022, 15(1): 6 [2022-09-29]. https://ovarianresearch.biomedcentral.com/articles/10.1186/s13048-021-00941-7. DOI: 10.1186/s13048-021-00941-7.
[40]
LI H M, GONG J, LI R M, et al. Development of MRI-based radiomics model to predict the risk of recurrence in patients with advanced high-grade serous ovarian carcinoma[J]. AJR Am J Roentgenol, 2021, 217(3): 664-675. DOI: 10.2214/AJR.20.23195.
[41]
WANG S, LIU Z Y, RONG Y, et al. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer[J]. Radiother Oncol, 2019, 132: 171-177. DOI: 10.1016/j.radonc.2018.10.019.
[42]
AKAZAWA M, HASHIMOTO K. Artificial intelligence in gynecologic cancers: current status and future challenges - A systematic review[J/OL]. Artif Intell Med, 2021, 120: 102164 [2022-09-29]. https://www.sciencedirect.com/science/article/pii/S0933365721001573?via%3Dihub. DOI: 10.1016/j.artmed.2021.102164.
[43]
BEREK J S, RENZ M, KEHOE S, et al. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update[J]. Int J Gynaecol Obstet, 2021, 155(Suppl 1): 61-85. DOI: 10.1002/ijgo.13878.
[44]
BAEK M H, PARK E Y, HA H I, et al. Secondary cytoreductive surgery in platinum-sensitive recurrent ovarian cancer: a meta-analysis[J]. J Clin Oncol, 2022, 40(15): 1659-1670. DOI: 10.1200/JCO.21.02085.
[45]
LHEUREUX S, BRAUNSTEIN M, OZA A M. Epithelial ovarian cancer: evolution of management in the era of precision medicine[J]. CA Cancer J Clin, 2019, 69(4): 280-304. DOI: 10.3322/caac.21559.
[46]
AI Y, ZHANG J D, JIN J B, et al. Preoperative prediction of metastasis for ovarian cancer based on computed tomography radiomics features and clinical factors[J/OL]. Front Oncol, 2021, 11: 610742 [2022-10-03]. https://www.frontiersin.org/articles/10.3389/fonc.2021.610742. DOI: 10.3389/fonc.2021.610742.
[47]
CHEN H Z, WANG X R, ZHAO F M, et al. The development and validation of a CT-based radiomics nomogram to preoperatively predict lymph node metastasis in high-grade serous ovarian cancer[J/OL]. Front Oncol, 2021, 11: 711648 [2022-10-03]. https://www.frontiersin.org/articles/10.3389/fonc.2021.711648. DOI: 10.3389/fonc.2021.711648.
[48]
WEI X Y, WU H, NIU G M, et al. Prediction of preoperative peritoneal metastasis in patients with epithelial ovarian cancer by multi-parameter MRI radiology[J]. Chin J Magn Reson Imaging, 2021, 12(8): 44-48. DOI: 10.12015/issn.1674-8034.2021.08.009.
[49]
BRISTOW R E, TOMACRUZ R S, ARMSTRONG D K, et al. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis[J]. J Clin Oncol, 2002, 20(5): 1248-1259. DOI: 10.1200/JCO.2002.20.5.1248.
[50]
RIZZO S, BOTTA F, RAIMONDI S, et al. Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months[J]. Eur Radiol, 2018, 28(11): 4849-4859. DOI: 10.1007/s00330-018-5389-z.
[51]
LI H M, ZHANG R, LI R M, et al. Noninvasive prediction of residual disease for advanced high-grade serous ovarian carcinoma by MRI-based radiomic-clinical nomogram[J]. Eur Radiol, 2021, 31(10): 7855-7864. DOI: 10.1007/s00330-021-07902-0.
[52]
WILSON M K, PUJADE-LAURAINE E, AOKI D, et al. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup: recurrent disease[J]. Ann Oncol, 2017, 28(4): 727-732. DOI: 10.1093/annonc/mdw663.
[53]
ZARGARI A, DU Y, HEIDARI M, et al. Prediction of chemotherapy response in ovarian cancer patients using a new clustered quantitative image marker[J/OL]. Phys Med Biol, 2018, 63(15): 155020 [2022-10-05]. https://iopscience.iop.org/article/10.1088/1361-6560/aad3ab. DOI: 10.1088/1361-6560/aad3ab.
[54]
MAO M M, LI H M, SHI J, et al. Prediction of platinum-based chemotherapy sensitivity for epithelial ovarian cancer by multi-sequence MRI-based radiomic nomogram[J]. Natl Med J China, 2022, 102(3): 201-208. DOI: 10.3760/cma.j.cn112137-20210816-01844.
[55]
YIP S S F, AERTS H J W L. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166. DOI: 10.1088/0031-9155/61/13/R150.
[56]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[57]
ZHAO B S, TAN Y Q, TSAI W Y, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging[J/OL]. Sci Rep, 2016, 6: 23428 [2022-10-05]. https://www.nature.com/articles/srep23428. DOI: 10.1038/srep23428.
[58]
MCNUTT T R, BENEDICT S H, LOW D A, et al. Using big data analytics to advance precision radiation oncology[J]. Int J Radiat Oncol Biol Phys, 2018, 101(2): 285-291. DOI: 10.1016/j.ijrobp.2018.02.028.
[59]
HAO J T, LIU Y, ZHANG T H, et al. Efficacy and safety of PARP inhibitors in the treatment of advanced ovarian cancer: an updated systematic review and meta-analysis of randomized controlled trials[J/OL]. Crit Rev Oncol Hematol, 2021, 157: 103145 [2022-10-05]. https://www.sciencedirect.com/science/article/abs/pii/S104084282030281X?via%3Dihub. DOI: 10.1016/j.critrevonc.2020.103145.
[60]
GUO C Z, YAN C D, QU L Y, et al. The efficacy and toxicity of angiogenesis inhibitors for ovarian cancer: a meta-analysis of randomized controlled trials[J]. Arch Gynecol Obstet, 2021, 303(2): 285-311. DOI: 10.1007/s00404-020-05865-z.

PREV Research progress of radiomics based on multi-parameter MRI in lymphatic space invasion of endometrial cancer
NEXT Application interpretation and research progress of ADNEX MR scoring system for ovarian tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn