Share:
Share this content in WeChat
X
Review
Research progress of MRI on brain in patients with cervical spondylotic myelopathy
WU Kaifu  WANG Xiang 

Cite this article as: WU K F, WANG X. Research progress of MRI on brain in patients with cervical spondylotic myelopathy[J]. Chin J Magn Reson Imaging, 2023, 14(6): 187-191. DOI:10.12015/issn.1674-8034.2023.06.034.


[Abstract] Cervical spondylotic myelopathy (CSM) is a common degenerative disease with severe neurological impairment. CSM has received widespread clinical attention. Previous studies have shown that CSM not only causes injury to the spinal cord itself, but also causes remodeling changes in the distal brain center, which may be related to the symptoms and prognosis of patients. In order to further understand the potential neuropathological mechanism of CSM, the paper reviews the current research status and progress of brain imaging in patients with CSM from the perspective of multi-parameter MRI (voxel-based morphology, diffusion tensor imaging, functional magnetic resonance imaging, magnetic resonance spectroscopy, etc), which may be of great significance for guiding clinical treatment and improving long-term rehabilitation efficacy.
[Keywords] cervical spondylotic myelopathy;brain plasticity;voxel-based morphometry;functional magnetic resonance imaging;diffusion tensor imaging;magnetic resonance imaging

WU Kaifu   WANG Xiang*  

Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.

Corresponding author: Wang X, E-mail: wangxiang385@aliyun.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Scientific Research Foundation of Wuhan Central Hospital (No. 22YJ29).
Received  2023-04-05
Accepted  2023-06-02
DOI: 10.12015/issn.1674-8034.2023.06.034
Cite this article as: WU K F, WANG X. Research progress of MRI on brain in patients with cervical spondylotic myelopathy[J]. Chin J Magn Reson Imaging, 2023, 14(6): 187-191. DOI:10.12015/issn.1674-8034.2023.06.034.

[1]
TERASHIMA Y, YURUBE T, SUMI M, et al. Clinical and Radiological Characteristics of Cervical Spondylotic Myelopathy in Young Adults: A Retrospective Case Series of Patients under Age 30[J]. Medicina (Kaunas), 2023, 59(3): 539. DOI: 10.3390/medicina59030539.
[2]
HOUTEN J K, SHAHSAVARANI S, VERMA R B. The Natural History of Degenerative Cervical Myelopathy[J]. Clin Spine Surg, 2022, 35(10): 396-402. DOI: 10.1097/BSD.0000000000001405.
[3]
RAJAN P V, PELLE D W, SAVAGE J W. New Imaging Modalities for Degenerative Cervical Myelopathy[J]. Clin Spine Surg, 2022, 35(10): 422-430. DOI: 10.1097/BSD.0000000000001408.
[4]
WEN C Y, CUI J L, LIU H S, et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy?[J]. Radiology, 2014, 270(1): 197-204. DOI: 10.1148/radiol.13121885.
[5]
BERBERAT J, ANDEREGGEN L, GRUBER P, et al. A Diagnostic Biomarker for Cervical Myelopathy Based on Dynamic MRI[J]. Spine (Phila Pa 1976), 2023. DOI: 10.1097/BRS.0000000000004667.
[6]
PROST S, FARAH K, TOQUART A, et al. Contribution of dynamic cervical MRI to surgical planning for degenerative cervical myelopathy: Revision rate and clinical outcomes at 5 years' postoperative[J]. Orthop Traumatol Surg Res, 2023, 109(2): 103440. DOI: 10.1016/j.otsr.2022.103440.
[7]
QU L, YANG S, YUAN L, et al. Are surgical outcomes for one level anterior decompression and fusion associated with MRI parameters for degenerative cervical myelopathy?[J]. Front Surg, 2022, 9: 967269. DOI: 10.3389/fsurg.2022.967269.
[8]
SUN L Q, LI M, LI Y M. Predictors for Surgical Outcome of Laminoplasty for Cervical Spondylotic Myelopathy[J]. World Neurosurg, 2016, 94: 89-96. DOI: 10.1016/j.wneu.2016.06.092.
[9]
YU C X, JI T T, SONG H, et al. Abnormality of spontaneous brain activities in patients with chronic neck and shoulder pain: A resting-state fMRI study[J]. J Int Med Res, 2017, 45(1): 182-192. DOI: 10.1177/0300060516679345.
[10]
LIU M, TAN Y, ZHANG C, et al. Cortical anatomy plasticity in cases of cervical spondylotic myelopathy associated with decompression surgery: A strobe-compliant study of structural magnetic resonance imaging[J/OL]. Medicine (Baltimore), 2021, 100(4): e24190 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/33530210/. DOI: 10.1097/MD.0000000000024190.
[11]
JUTTEN K, MAINZ V, SCHUBERT G A, et al. Cortical volume reductions as a sign of secondary cerebral and cerebellar impairment in patients with degenerative cervical myelopathy[J]. Neuroimage Clin, 2021, 30: 102624. DOI: 10.1016/j.nicl.2021.102624.
[12]
OUGHOURLIAN T C, WANG C, SALAMON N, et al. Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy[J]. J Clin Med, 2021, 10(17): 3965. DOI: 10.3390/jcm10173965.
[13]
BESSON P, BERNASCONI N, COLLIOT O, et al. Surface-based texture and morphological analysis detects subtle cortical dysplasia[J]. Med Image Comput Comput Assist Interv, 2008, 11(Pt 1): 645-652. DOI: 10.1007/978-3-540-85988-8_77.
[14]
WOODWORTH D C, HOLLY L T, MAYER E A, et al. Alterations in Cortical Thickness and Subcortical Volume are Associated with Neurological Symptoms and Neck Pain in Patients with Cervical Spondylosis[J]. Neurosurgery, 2019, 84(3): 588-598. DOI: 10.1093/neuros/nyy066.
[15]
KITAMURA M, MAKI S, KODA M, et al. Longitudinal diffusion tensor imaging of patients with degenerative cervical myelopathy following decompression surgery[J]. J Clin Neurosci, 2020, 74: 194-198. DOI: 10.1016/j.jocn.2019.05.018.
[16]
TAKAMIYA S, IWASAKI M, YOKOHAMA T, et al. The Prediction of Neurological Prognosis for Cervical Spondylotic Myelopathy Using Diffusion Tensor Imaging[J]. Neurospine, 2023, 20(1): 248-254. DOI: 10.14245/ns.2244708.354.
[17]
SINGHAL S, SARAN S, SAXENA S, et al. Role of diffusion kurtosis imaging in evaluating microstructural changes in spinal cord of patients with cervical spondylosis[J]. Eur Spine J, 2023, 32(3): 986-993. DOI: 10.1007/s00586-023-07559-x.
[18]
ZHAO G, ZHANG C, ZHAN Y, et al. The Correlation between Functional Connectivity of the Primary Somatosensory Cortex and Cervical Spinal Cord Microstructural Injury in Patients with Cervical Spondylotic Myelopathy[J]. Dis Markers, 2022, 2022: 2623179. DOI: 10.1155/2022/2623179.
[19]
WU X, WANG Y, CHANG J, et al. Remodeling of the brain correlates with gait instability in cervical spondylotic myelopathy[J]. Front Neurosci, 2023, 17: 1087945. DOI: 10.3389/fnins.2023.1087945.
[20]
ZHAN Y R, HE L C, TAN Y M, et al. Study on retrograde degeneration of corticospinal tract in cervical spondylotic myelopathy patients based on DTI[J]. J Chin Clin Med Imaging, 2020, 31(4): 238-242. DOI: 10.12117/jccmi.2020.04.003.
[21]
ZHAN Y R. Study on White Matter Microstructure in Patients with Cervical Spondylotic Myelopathy Based on TBSS[D]. Nanchang: Nanchang University, 2020. DOI: 10.27232/d.cnki.gnchu.2020.000740.
[22]
CRONIN A E, DETOMBE S A, DUGGAL C A, et al. Spinal cord compression is associated with brain plasticity in degenerative cervical myelopathy[J/OL]. Brain Commun, 2021, 3(3): b131 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/34396102/. DOI: 10.1093/braincomms/fcab131.
[23]
HOLLY L T, DONG Y, ALBISTEGUI-DUBOIS R, et al. Cortical reorganization in patients with cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2007, 6(6): 544-551. DOI: 10.3171/spi.2007.6.6.5.
[24]
BHAGAVATULA I D, SHUKLA D, SADASHIVA N, et al. Functional cortical reorganization in cases of cervical spondylotic myelopathy and changes associated with surgery[J/OL]. Neurosurg Focus, 2016, 40(6): E2 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/27246485/. DOI: 10.3171/2016.3.FOCUS1635.
[25]
WANG R, LIN P, LIU M, et al. Hierarchical Connectome Modes and Critical State Jointly Maximize Human Brain Functional Diversity[J]. Phys Rev Lett, 2019, 123(3): 38301. DOI: 10.1103/PhysRevLett.123.038301.
[26]
LV H, WANG Z, TONG E, et al. Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[27]
ZANG Y F, HE Y, ZHU C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91. DOI: 10.1016/j.braindev.2006.07.002.
[28]
ZHANG C L, TAN Y M, HE L C, et al. Frequency-dependent Alterations in Fractional Amplitude of Low-Frequency Fluctuations in Cervical Spondylotic Myelopathy: Resting-State fMRI Study[J]. J Clin Radiol, 2019, 38(4): 578-582. DOI: 10.13437/j.cnki.jcr.2019.04.002
[29]
ZHAO R, GUO X, WANG Y, et al. Functional MRI evidence for primary motor cortex plasticity contributes to the disease's severity and prognosis of cervical spondylotic myelopathy patients[J]. Eur Radiol, 2022, 32(6): 3693-3704. DOI: 10.1007/s00330-021-08488-3.
[30]
TAKENAKA S, KAN S, SEYMOUR B, et al. Resting-state Amplitude of Low-frequency Fluctuation is a Potentially Useful Prognostic Functional Biomarker in Cervical Myelopathy[J]. Clin Orthop Relat Res, 2020, 478(7): 1667-1680. DOI: 10.1097/CORR.0000000000001157.
[31]
KUANG C, ZHA Y. Abnormal intrinsic functional activity in patients with cervical spondylotic myelopathy: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2019, 15: 2371-2383. DOI: 10.2147/NDT.S209952.
[32]
CHEN Z, WANG Q, LIANG M, et al. Visual cortex neural activity alteration in cervical spondylotic myelopathy patients: a resting-state fMRI study[J]. Neuroradiology, 2018, 60(9): 921-932. DOI: 10.1007/s00234-018-2061-x.
[33]
BISWAL B, YETKIN F Z, HAUGHTON V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537-541. DOI: 10.1002/mrm.1910340409.
[34]
ZHOU F Q, TAN Y M, WU L, et al. Intrinsic functional plasticity of the sensory-motor network in patients with cervical spondylotic myelopathy[J]. Sci Rep, 2015, 5: 9975. DOI: 10.1038/srep09975.
[35]
CHEN Z, ZHAO R, WANG Q, et al. Functional Connectivity Changes of the Visual Cortex in the Cervical Spondylotic Myelopathy Patients: A Resting-State fMRI Study[J/OL]. Spine (Phila Pa 1976), 2020, 45(5): E272-E279 [2023-04-04]. https://pubmed.ncbi.nlm.nih.gov/31513096/. DOI: 10.1097/BRS.0000000000003245.
[36]
ZHAN Y R, CAO Y, ZHAO G S, et al. Study of Functional Connectivity Alterations of Resting-State Network in Patients with Cervical Spondylotic Myelopathy Based on ICA[J]. J Clin Radiol, 2020, 39(8): 1473-1477. DOI: 10.13437/j.cnki.jcr.2020.08.003.
[37]
ZHAO R, SU Q, CHEN Z, et al. Neural Correlates of Cognitive Dysfunctions in Cervical Spondylotic Myelopathy Patients: A Resting-State fMRI Study[J]. Front Neurol, 2020, 11: 596795. DOI: 10.3389/fneur.2020.596795.
[38]
ZHANG H, DING J R, YAN C D, et al. Research progress of rs-fMRI in brain ischemic white matter lesions[J]. Chin J Magn Reson Imaging, 2022, 13(4): 154-157. DOI: 10.12015/issn.1674-8034.2022.04.034.
[39]
KUANG C, ZHA Y, LIU C, et al. Altered Topological Properties of Brain Structural Covariance Networks in Patients with Cervical Spondylotic Myelopathy[J]. Front Hum Neurosci, 2020, 14: 364. DOI: 10.3389/fnhum.2020.00364.
[40]
CAO Y, ZHAN Y, DU M, et al. Disruption of human brain connectivity networks in patients with cervical spondylotic myelopathy[J]. Quant Imaging Med Surg, 2021, 11(8): 3418-3430. DOI: 10.21037/qims-20-874.
[41]
WANG C, ELLINGSON B M, OUGHOURLIAN T C, et al. Evolution of brain functional plasticity associated with increasing symptom severity in degenerative cervical myelopathy[J]. EBioMedicine, 2022, 84: 104255. DOI: 10.1016/j.ebiom.2022.104255.
[42]
KOWALCZYK I, DUGGAL N, BARTHA R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy[J]. Brain, 2012, 135(Pt 2): 461-468. DOI: 10.1093/brain/awr328.
[43]
ZHAN Y R, HE L C, TAN Y M, et al. Proton Magnetic Resonance Spectroscopy of Primary Motor Cortex in Cervical Spondylotic Myelopathy: A Preliminary Study[J]. J Clin Radiol, 2019, 38(10): 1810-1814. DOI: 10.13437/j.cnki.jcr.2019.10.003.
[44]
HOLLY L T, FREITAS B, MCARTHUR D L, et al. Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2009, 10(3): 194-200. DOI: 10.3171/2008.12.SPINE08367.
[45]
ALEKSANDEREK I, STEVENS T K, GONCALVES S, et al. Metabolite and functional profile of patients with cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2017, 26(5): 547-553. DOI: 10.3171/2016.9.SPINE151507.
[46]
ALEKSANDEREK I, MCGREGOR S M, STEVENS T K, et al. Cervical Spondylotic Myelopathy: Metabolite Changes in the Primary Motor Cortex after Surgery[J]. Radiology, 2017, 282(3): 817-825. DOI: 10.1148/radiol.2016152083.
[47]
GONCALVES S, STEVENS T K, DOYLE-PETTYPIECE P, et al. N-acetylaspartate in the motor and sensory cortices following functional recovery after surgery for cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2016, 25(4): 436-443. DOI: 10.3171/2016.2.SPINE15944.
[48]
GOHMANN R F, BLUME C, ZVYAGINTSEV M, et al. Cervical spondylotic myelopathy: Changes of fractional anisotropy in the spinal cord and magnetic resonance spectroscopy of the primary motor cortex in relation to clinical symptoms and their duration[J]. Eur J Radiol, 2019, 116: 55-60. DOI: 10.1016/j.ejrad.2019.04.009.
[49]
ZHOU F, HUANG M, WU L, et al. Altered perfusion of the sensorimotor cortex in patients with cervical spondylotic myelopathy: an arterial spin labeling study[J]. J Pain Res, 2018, 11: 181-190. DOI: 10.2147/JPR.S148076.
[50]
WEI W, WANG T, ABULIZI T, et al. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity Strength in Cervical Spondylotic Myelopathy Patients[J]. Front Neurol, 2021, 12: 713520. DOI: 10.3389/fneur.2021.713520.

PREV Application interpretation and research progress of ADNEX MR scoring system for ovarian tumors
NEXT Research progress of osteoarthritis of the knee using MRI: based on deep learning
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn