Share:
Share this content in WeChat
X
Review
Principle and application progress of magnetic resonance reporter gene imaging
SUN Jun  GUO Yi 

Cite this article as: SUN J, GUO Y. Principle and application progress of magnetic resonance reporter gene imaging[J]. Chin J Magn Reson Imaging, 2023, 14(6): 198-202. DOI:10.12015/issn.1674-8034.2023.06.036.


[Abstract] With the development of magnetic resonance imaging methods and the development of new sequences, magnetic resonance imaging has become increasingly widely used early diagnosis of diseases, cell tracing, and gene analysis. Magnetic resonance reporter gene imaging, as an important branch of magnetic resonance imaging, has also received great attention. There are various types of magnetic resonance imaging reporter genes, and their application fields vary due to their different imaging principles. Familiarity with the imaging principles and advantages and disadvantages of magnetic resonance imaging reporter genes is a prerequisite for their application. This article will introduce the application of reporter genes from the imaging principles, research frontiers, and future development of magnetic resonance reporter genes. We hope to improve the efficiency and safety of magnetic resonance molecular imaging and promote the development of magnetic resonance imaging technology.
[Keywords] magnetic resonance imaging;reporter gene;metal dependence;ferritin genes;chemical exchange saturation transfer

SUN Jun   GUO Yi*  

Department of Radiology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing 400014, China

Corresponding author: Guo Y, E-mail: YIGUO_0909@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Chongqing Natural Science Foundation (No. cstc2021jcyj-msxmX0841); Chongqing Science and Health Union (No. 2023MSXM016).
Received  2022-01-25
Accepted  2023-05-18
DOI: 10.12015/issn.1674-8034.2023.06.036
Cite this article as: SUN J, GUO Y. Principle and application progress of magnetic resonance reporter gene imaging[J]. Chin J Magn Reson Imaging, 2023, 14(6): 198-202. DOI:10.12015/issn.1674-8034.2023.06.036.

[1]
ZAMBITO G, CHAWDA C, MEZZANOTTE L. Emerging tools for bioluminescence imaging[J/OL]. Curr Opin Chem Biol, 2021, 63: 86-94 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/33770744/. DOI: 10.1016/j.cbpa.2021.02.005.
[2]
SAHU A, OH Y, PETERSON G, et al. In vivo optical imaging-guided targeted sampling for precise diagnosis and molecular pathology[J/OL]. Sci Rep, 2021, 11(1): 23124 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/34848749/. DOI: 10.1038/s41598-021-01447-4.
[3]
ZHOU J P, ZHOU Q M, SHU G F, et al. Dual-effect of magnetic resonance imaging reporter gene in diagnosis and treatment of hepatocellular carcinoma[J/OL]. Int J Nanomedicine, 2020, 15: 7235-7249 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/33061378/. DOI: 10.2147/IJN.S257628.
[4]
PARKINS K M, MELO K P, CHEN Y X, et al. Visualizing tumour self-homing with magnetic particle imaging[J]. Nanoscale, 2021, 13(12): 6016-6023. DOI: 10.1039/d0nr07983a.
[5]
MU T, QIN Y, LIU B, et al. In vitro neural differentiation of bone marrow mesenchymal stem cells carrying the FTH1 reporter gene and detection with MRI[J/OL]. Biomed Res Int, 2018, 2018: 1978602 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038692/. DOI: 10.1155/2018/1978602.
[6]
YAHYAPOUR R, FARHOOD B, GRAILY G, et al. Stem cell tracing through MR molecular imaging[J]. Tissue Eng Regen Med, 2018, 15(3): 249-261. DOI: 10.1007/s13770-017-0112-8.
[7]
GAO T X, ZOU C Y, LI Y F, et al. A brief history and future prospects of CEST MRI in clinical non-brain tumor imaging[J/OL]. Int J Mol Sci, 2021, 22(21): 11559 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584005/. DOI: 10.3390/ijms222111559.
[8]
KOMBALA C J, KOTROTSOU A, SCHULER F W, et al. Development of a nanoscale chemical exchange saturation transfer magnetic resonance imaging contrast agent that measures pH[J]. ACS Nano, 2021, 15(12): 20678-20688. DOI: 10.1021/acsnano.1c10107.
[9]
HARRISON PM, AROSIO P. The ferritins: molecular properties, iron storage function and cellular regulation[J]. Biochim Biophys Acta BBA Bioenerg, 1996, 1275(3): 161-203. DOI: 10.1016/0005-2728(96)00022-9.
[10]
GUO R M, LI Q L, YANG F, et al. In vivo MR imaging of dual MRI reporter genes and deltex-1 gene-modified human mesenchymal stem cells in the treatment of closed penile fracture[J]. Mol Imaging Biol, 2018, 20(3): 417-427. DOI: 10.1007/s11307-017-1128-0.
[11]
ZHANG Q, LU Y F, XU X L, et al. MR molecular imaging of HCC employing a regulated ferritin gene carried by a modified polycation vector[J/OL]. Int J Nanomedicine, 2019, 14: 3189-3201 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504634/. DOI: 10.2147/IJN.S191270.
[12]
HUANG X L, XUE Y, WU J L, et al. MRI tracking of SPIO- and Fth1-labeled bone marrow mesenchymal stromal cell transplantation for treatment of stroke[J/OL]. Contrast Media Mol Imaging, 2019, 2019: 5184105 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735219/. DOI: 10.1155/2019/5184105.
[13]
KIM H S, WOO J, CHOI Y, et al. Noninvasive MRI and multilineage differentiation capability of ferritin-transduced human mesenchymal stem cells[J]. NMR Biomed, 2015, 28(2): 168-179. DOI: 10.1002/nbm.3236.
[14]
MARDANPOUR P, NAYERNIA K, KHODAYARI S, et al. Application of stem cell technologies to regenerate injured myocardium and improve cardiac function[J]. Cell Physiol Biochem, 2019, 53(1): 101-120. DOI: 10.33594/000000124.
[15]
COHEN B, ZIV K, PLAKS V, et al. Ferritin nanoparticles as magnetic resonance reporter gene[J]. WIREs Nanomed Nanobiotechnol, 2009, 1(2): 181-188. DOI: 10.1002/wnan.11.
[16]
ZHUO Y Y, CHEN F, KONG L D, et al. Magnetic resonance imaging of the human ferritin heavy chain reporter gene carried by dendrimer-entrapped gold nanoparticles[J]. J Biomed Nanotechnol, 2019, 15(3): 518-530. DOI: 10.1166/jbn.2019.2697.
[17]
LIU T Q, ZHU Y R, ZHAO R T, et al. Visualization of exosomes from mesenchymal stem cells in vivo by magnetic resonance imaging[J/OL]. Magn Reson Imaging, 2020, 68: 75-82 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/32027941/. DOI: 10.1016/j.mri.2020.02.001.
[18]
WU Q, ONO K, SUZUKI H, et al. Visualization of Arc promoter-driven neuronal activity by magnetic resonance imaging[J/OL]. Neurosci Lett, 2018, 666: 92-97 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/29274439/. DOI: 10.1016/j.neulet.2017.12.041.
[19]
UCHIL P D, NAGARAJAN A, KUMAR P. β-galactosidase[J/OL]. Cold Spring Harb Protoc, 2017, 2017(10) [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/28974659/. DOI: 10.1101/pdb.top096198.
[20]
GAO S, ZHAO L, FAN Z Q, et al. In situ generated novel 1H MRI reporter for β-galactosidase activity detection and visualization in living tumor cells[J/OL]. Front Chem, 2021, 9: 709581 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/34336792/. DOI: 10.3389/fchem.2021.709581.
[21]
ARENA F, SINGH J B, GIANOLIO E, et al. β-Gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd(Ⅲ) containing probe forming a high relaxivity, melanin-like structure upon β-Gal enzymatic activation[J]. Bioconjug Chem, 2011, 22(12): 2625-2635. DOI: 10.1021/bc200486j.
[22]
KIRSCHER L, DEÁN-BEN X L, SCADENG M, et al. Doxycycline inducible melanogenic vaccinia virus as theranostic anti-cancer agent[J]. Theranostics, 2015, 5(10): 1045-1057. DOI: 10.7150/thno.12533.
[23]
PATRICK P S, RODRIGUES T B, KETTUNEN M I, et al. Development of Timd2 as a reporter gene for MRI[J]. Magn Reson Med, 2016, 75(4): 1697-1707. DOI: 10.1002/mrm.25750.
[24]
PEREIRA S M, HERRMANN A, MOSS D, et al. Evaluating the effectiveness of transferrin receptor-1 (TfR1) as a magnetic resonance reporter gene[J]. Contrast Media Mol Imaging, 2016, 11(3): 236-244. DOI: 10.1002/cmmi.1686.
[25]
PEREIRA S M, MOSS D, WILLIAMS S R, et al. Overexpression of the MRI reporter genes ferritin and transferrin receptor affect iron homeostasis and produce limited contrast in mesenchymal stem cells[J]. Int J Mol Sci, 2015, 16(7): 15481-15496. DOI: 10.3390/ijms160715481.
[26]
PEREIRA S M, WILLIAMS S R, MURRAY P, et al. MS-1 magA: revisiting its efficacy as a reporter gene for MRI[J/OL]. Mol Imaging, 2016, 15: 1536012116641533 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470133/. DOI: 10.1177/1536012116641533.
[27]
UEBE R, KEREN-KHADMY N, ZEYTUNI N, et al. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization[J]. Mol Microbiol, 2018, 107(4): 542-557. DOI: 10.1111/mmi.13899.
[28]
WU A, FENG B, YU J, et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis[J/OL]. Redox Biol, 2021, 46: 102131 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/34530349/. DOI: 10.1016/j.redox.2021.102131.
[29]
GATTERMANN N, MUCKENTHALER M U, KULOZIK A E, et al. The evaluation of iron deficiency and iron overload[J]. Dtsch Arztebl Int, 2021, 118(49): 847-856. DOI: 10.3238/arztebl.m2021.0290.
[30]
DENG H F, YUE L X, WANG N N, et al. Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity[J/OL]. Front Pharmacol, 2020, 11: 624529 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/33584308/. DOI: 10.3389/fphar.2020.624529.
[31]
GOERKE S, BREITLING J, KORZOWSKI A, et al. Clinical routine acquisition protocol for 3D relaxation-compensated APT and rNOE CEST-MRI of the human brain at 3T[J]. Magn Reson Med, 2021, 86(1): 393-404. DOI: 10.1002/mrm.28699.
[32]
HEO H Y, ZHANG Y, LEE D H, et al. Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques[J]. Magn Reson Med, 2017, 77(2): 779-786. DOI: 10.1002/mrm.26141.
[33]
MCMAHON M T, GILAD A A. Cellular and molecular imaging using chemical exchange saturation transfer[J]. Top Magn Reson Imaging, 2016, 25(5): 197-204. DOI: 10.1097/rmr.0000000000000105.
[34]
KIM J, WU Y, GUO Y K, et al. A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging[J]. Contrast Media Mol Imaging, 2015, 10(3): 163-178. DOI: 10.1002/cmmi.1628.
[35]
JONES K M, POLLARD A C, PAGEL M D. Clinical applications of chemical exchange saturation transfer (CEST) MRI[J]. J Magn Reson Imaging, 2018, 47(1): 11-27. DOI: 10.1002/jmri.25838.
[36]
BAR-SHIR A, BULTE J W M, GILAD A A. Molecular engineering of nonmetallic biosensors for CEST MRI[J]. ACS Chem Biol, 2015, 10(5): 1160-1170. DOI: 10.1021/cb500923v.
[37]
MUKHERJEE A, DAVIS H C, RAMESH P, et al. Biomolecular MRI reporters: evolution of new mechanisms[J/OL]. Prog Nucl Magn Reson Spectrosc, 2017, 102/103: 32-42 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726449/. DOI: 10.1016/j.pnmrs.2017.05.002.
[38]
FARRAR C T, BUHRMAN J S, LIU G S, et al. Establishing the lysine-rich protein CEST reporter gene as a CEST MR imaging detector for oncolytic virotherapy[J]. Radiology, 2015, 275(3): 746-754. DOI: 10.1148/radiol.14140251.
[39]
PERLMAN O, ITO H, GILAD A A, et al. Redesigned reporter gene for improved proton exchange-based molecular MRI contrast[J/OL]. Sci Rep, 2020, 10(1): 20664 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692519/. DOI: 10.1038/s41598-020-77576-z.
[40]
BAR-SHIR A, LIU G, GREENBERG M M, et al. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI[J]. Nat Protoc, 2013, 8(12): 2380-2391. DOI: 10.1038/nprot.2013.140.
[41]
MINN I, BAR-SHIR A, YARLAGADDA K, et al. Tumor-specific expression and detection of a CEST reporter gene[J]. Magn Reson Med, 2015, 74(2): 544-549. DOI: 10.1002/mrm.25748.
[42]
PANKOWSKA A, KOCHALSKA K, ŁAZORCZYK A, et al. Chemical exchange saturation transfer (CEST) as a new method of signal obtainment in magnetic resonance molecular imaging in clinical and research practice[J/OL]. Pol J Radiol, 2019, 84: e147-e152 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/28008959/. DOI: 10.5114/pjr.2019.84242.
[43]
TRILLO-CONTRERAS J, TOLEDO-ARAL J, ECHEVARRÍA M, et al. AQP1 and AQP4 contribution to cerebrospinal fluid homeostasis[J/OL]. Cells, 2019, 8(2): 197 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/30813473/. DOI: 10.3390/cells8020197.
[44]
ZHENG X, CHEN Y B, ZHENG D C, et al. Diffusion kurtosis imaging and tumour microstructure for monitoring response to radiotherapy in human nasopharyngeal carcinoma xenografts[J]. Jpn J Clin Oncol, 2020, 50(5): 548-555. DOI: 10.1093/jjco/hyaa002.
[45]
MUKHERJEE A, WU D, DAVIS H C, et al. Non-invasive imaging using reporter genes altering cellular water permeability[J/OL]. Nat Commun, 2016, 7: 13891 [2021-12-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5196229/. DOI: 10.1038/ncomms13891.
[46]
SHAPIRO M G, GOODWILL P W, NEOGY A, et al. Biogenic gas nanostructures as ultrasonic molecular reporters[J]. Nat Nanotechnol, 2014, 9(4): 311-316. DOI: 10.1038/nnano.2014.32.
[47]
LU G J, FARHADI A, SZABLOWSKI J O, et al. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures[J]. Nat Mater, 2018, 17(5): 456-463. DOI: 10.1038/s41563-018-0023-7.
[48]
SHAPIRO M G, RAMIREZ R M, SPERLING L J, et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging[J]. Nat Chem, 2014, 6(7): 629-634. DOI: 10.1038/nchem.1934.
[49]
WU M, SHU J. Multimodal molecular imaging: current status and future directions[J/OL]. Contrast Media Mol Imaging, 2018, 2018: 1382183 [2021-12-27]. https://pubmed.ncbi.nlm.nih.gov/29967571/. DOI: 10.1155/2018/1382183.
[50]
PADMANABHAN P, OTERO J, RAY P, et al. Visualization of telomerase reverse transcriptase (hTERT) promoter activity using a trimodality fusion reporter construct[J]. J Nucl Med, 2006, 47(2): 270-277.

PREV Research progress of osteoarthritis of the knee using MRI: based on deep learning
NEXT SCMR white paper: Interpretation of rapid CMR for clinical indications
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn