Share:
Share this content in WeChat
X
Clinical Articles
ASL in childhood brain tumors: A Meta-analysis
GUO Yu  SHAO Jianbo  PENG Xuehua  XIA Wei 

Cite this article as: GUO Y, SHAO J B, PENG X H, et al. ASL in childhood brain tumors: A Meta-analysis[J]. Chin J Magn Reson Imaging, 2023, 14(7): 25-31. DOI:10.12015/issn.1674-8034.2023.07.005.


[Abstract] Objective To assess the diagnostic accuracy of arterial spin labeling (ASL) in the differentiation of high-grade and low-grade brain tumors in children based on Meta-analysis.Materials and Methods Comprehensive search of studies from January 2011 to November 2022 in CNKI, Wanfang Data, MEDLINE (Ovid), Pubmed, Embase, Web of Science and Cochrane Library (Wiley) databases. Data extraction and quality assessment of the retrieved studies were performed according to inclusion and exclusion criteria. Stata 16 and RevMan 5.3 were used for Meta-analysis.Results Eleven articles were included, and the diagnostic data were absolute cerebral blood flow and relative cerebral blood flow. The mean difference in aCBF was 24.39 mL/min/100 g [95% confidence interval (CI): 3.56-45.22 mL/min/100 g], I2=88%, P<0.00001; the mean difference in rCBF was 0.92 mL/min/100 g (95% CI: 0.80-1.04 mL/min/100 g), I2=40%, P=0.112. The pooled sensitivity for aCBF was 90% (95% CI: 69%-97%), specificity was 87% (95% CI: 70%-95%), the area under the curve was 0.95 (95% CI: 0.92-0.96), the pooled sensitivity for rCBF was 90% (95% CI: 84%-94%), the specificity was 92% (95% CI: 86%-96%), and the area under the curve was 0.96 (95% CI: 0.94-0.98).Conclusions ASL showed high diagnostic accuracy for distinguishing high-grade brain tumors from low-grade brain tumors in children, and can be used as a potential method for grading brain tumors in children. Relative cerebral blood flow showed less variation among studies than absolute cerebral blood flow.
[Keywords] brain tumors;arterial spin labeling;magnetic resonance imaging;children;Meta-analysis

GUO Yu   SHAO Jianbo*   PENG Xuehua   XIA Wei  

Department of Imaging Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan Clinical Research Center for Children's Medical Imaging, Wuhan 430015, China

Corresponding author: Shao JB, E-mail: shaojb2002@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Hubei Province (No. 2021CFB177); Wuhan Municipal Health Commission-Clinical Medical Scientific Research Project (No. WX21Z64).
Received  2023-02-17
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.005
Cite this article as: GUO Y, SHAO J B, PENG X H, et al. ASL in childhood brain tumors: A Meta-analysis[J]. Chin J Magn Reson Imaging, 2023, 14(7): 25-31. DOI:10.12015/issn.1674-8034.2023.07.005.

[1]
ADEL FAHMIDEH M, SCHEURER M E. Pediatric Brain Tumors: Descriptive Epidemiology, Risk Factors, and Future Directions[J]. Cancer Epidemiol Biomarkers Prev, 2021, 30(5): 813-821. DOI: 10.1158/1055-9965.Epi-20-1443.
[2]
GRITSCH S, BATCHELOR T T, GONZALEZ CASTRO L N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system[J]. Cancer, 2022, 128(1): 47-58. DOI: 10.1002/cncr.33918.
[3]
SPENNATO P, NICOSIA G, QUAGLIETTA L, et al. Posterior fossa tumors in infants and neonates[J]. Childs Nerv Syst, 31(10): 1751-1772. DOI: 10.1007/s00381-015-2783-6.
[4]
SHROT S, SALHOV M, DVORSKI N, et al. Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme[J]. Neuroradiology, 2019, 61(7): 757-765. DOI: 10.1007/s00234-019-02195-z.
[5]
VAJAPEYAM S, BROWN D, BILLUPS C, et al. Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an As sociation with Survival and Pseudoprogression in Newly Diagnosed Diffu se Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor C onsortium[J]. AJNR Am J Neuroradiol, 2020, 41(4): 718-724. DOI: 10.3174/ajnr.A6499.
[6]
TROUDI A, TENSAOUTI F, BAUDOU E, et al. Arterial Spin Labeling Perfusion in Pediatric Brain Tumors: A Review of Techniques, Quality Control, and Quantification[J]. Cancers (Basel), 2022, 14(19): 4734. DOI: 10.3390/cancers14194734.
[7]
KITAJIMA M, UETANI H. Arterial Spin Labeling for Pediatric Central Nervous System Diseases: Techniques and Clinical Applications[J]. Magn Reson Med Sci, 2023, 22(1): 27-43. DOI: 10.2463/mrms.rev.2021-0118.
[8]
BAMBACH S, SMITH M, MORRIS P P, et al. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders[J]. J Magn Reson Imaging, 2022, 55(3): 698-719. DOI: 10.1002/jmri.27438.
[9]
QU Y, KONG D, WEN H, et al. Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI[J]. Eur Radiol, 2022, 32(5): 2976-2987. DOI: 10.1007/s00330-021-08406-7.
[10]
SHEN N, ZHAO L, JIANG J, et al. Intravoxel incoherent motion diffusion-weighted imaging analysis of di ffusion and microperfusion in grading gliomas and comparison with arte rial spin labeling for evaluation of tumor perfusion[J]. J Magn Reson Imaging, 44(3): 620-632. DOI: 10.1002/jmri.25191.
[11]
QIAO X J, KIM H G, WANG D J J, et al. Application of arterial spin labeling perfusion MRI to differentiate b enign from malignant intracranial meningiomas[J]. Eur J Radiol, 97: 31-36. DOI: 10.1016/j.ejrad.2017.10.005.
[12]
LUNA L P, AHMED A, DAFTARIBESHELI L, et al. Arterial spin labeling clinical applications for brain tumors and tumor treatment complications: A comprehensive case-based review[J]. Neuroradiol J, 2023, 36(2): 129-141. DOI: 10.1177/19714009221114444.
[13]
DANGOULOFF-ROS V, GREVENT D, PAGES M, et al. Choroid Plexus Neoplasms: Toward a Distinction between Carcinoma and Papilloma Using Arterial Spin-Labeling[J]. AJNR Am J Neuroradiol, 2015, 36(9): 1786-1790. DOI: 10.3174/ajnr.A4332.
[14]
DANGOULOFF-ROS V, DEROULERS C, FOISSAC F, et al. Arterial Spin Labeling to Predict Brain Tumor Grading in Children: Correlations between Histopathologic Vascular Density and Perfusion MR Imaging[J]. Radiology, 2016, 281(2): 553-566. DOI: 10.1148/radiol.2016152228.
[15]
HALES P W, PHIPPS K P, KAUR R, et al. A Two-Stage Model for In Vivo Assessment of Brain Tumor Perfusion and Abnormal Vascular Structure Using Arterial Spin Labeling[J/OL]. PLOS ONE, 2013, 8(10): e75717 [2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/24098395/. DOI: 10.1371/journal.pone.0075717.
[16]
KIKUCHI K, HIWATASHI A, TOGAO O, et al. Correlation between arterial spin-labeling perfusion and histopathological vascular density of pediatric intracranial tumors[J]. J Neurooncol, 2017, 135(3): 561-569. DOI: 10.1007/s11060-017-2604-8.
[17]
LIU H L, CHANG T T, YAN F X, et al. Assessment of vessel permeability by combining dynamic contrast-enhanced and arterial spin labeling MRI[J]. NMR Biomed, 2015, 28(6): 642-649. DOI: 10.1002/nbm.3297.
[18]
MORANA G, PICCARDO A, TORTORA D, et al. Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F-DOPA PET[J]. Eur J Nucl Med Mol Imaging, 2017, 44(12): 2084-2093. DOI: 10.1007/s00259-017-3777-2.
[19]
MORANA G, TORTORA D, STAGLIANO S, et al. Pediatric astrocytic tumor grading: comparison between arterial spin labeling and dynamic susceptibility contrast MRI perfusion[J]. Neuroradiology, 2018, 60(4): 437-446. DOI: 10.1007/s00234-018-1992-6.
[20]
NOVAK J, WITHEY S B, LATEEF S, et al. A comparison of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast MRI with and without contrast agent leakage correction in paediatric brain tumours[J]. Br J Radiol, 2019, 92(1094): 20170872. DOI: 10.1259/bjr.20170872.
[21]
PICCARDO A, TORTORA D, MASCELLI S, et al. Advanced MR imaging and F-18-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas[J]. Eur J Nucl Med Mol Imaging, 2019, 46(8): 1685-1694. DOI: 10.1007/s00259-019-04333-4.
[22]
WANG D, HU W, CHEN C, et al. The Application of 3D Arterial Spin Labeling Combination with Diffusion Weighted Imaging in the Grading of Brain Tumors in Children[J]. J Clin Radiol, 2020, 39(7): 1408-1411. DOI: 10.13437/j.cnki.jcr.2020.07.035.
[23]
WANG Y F, ZHANG X R, SHEN J, et al. Diagnostic value of arterial spin labeling in pediatric brain tumors[J]. J Med Imaging, 2015, 25(8): 1328-1332.
[24]
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[25]
GOLAY X, HO M L. Multidelay ASL of the pediatric brain[J]. Br J Radiol, 2022, 95(1134): 20220034. DOI: 10.1259/bjr.20220034.
[26]
KIM H G, CHOI J W, LEE J H, et al. Association of Cerebral Blood Flow and Brain Tissue Relaxation Time With Neurodevelopmental Outcomes of Preterm Neonates: Multidelay Arterial Spin Labeling and Synthetic MRI Study[J]. Invest Radiol, 2022, 57(4): 254-262. DOI: 10.1097/RLI.0000000000000833.
[27]
ZHOU L M, WANG Y M, PINHO M C, et al. Intrasession Reliability of Arterial Spin-Labeled MRI-Measured Noncontrast Perfusion in Glioblastoma at 3 T[J]. Tomography, 2020, 6(2): 139-147. DOI: 10.18383/j.tom.2020.00010.
[28]
LUAN J, WU M, WANG X, et al. The diagnostic value of quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a meta-analysis[J]. Radiation Oncology, 2020, 15(1): 204. DOI: 10.1186/s13014-020-01643-y.
[29]
TANAKA F, UMINO M, MAEDA M, et al. Pseudocontinuous Arterial Spin Labeling: Clinical Applications and Usefulness in Head and Neck Entities[J]. Cancers (Basel), 2022, 14(16): 387. DOI: 10.3390/cancers14163872.
[30]
MANNING P, DAGHIGHI S, RAJARATNAM M K, et al. Differentiation of progressive disease from pseudoprogression using 3D PCASL and DSC perfusion MRI in patients with glioblastoma[J]. J Neurooncol, 2020, 147(3): 681-690. DOI: 10.1007/s11060-020-03475-y.
[31]
MARAL H, ERTEKIN E, TUNCYUREK O, et al. Effects of Susceptibility Artifacts on Perfusion MRI in Patients with Primary Brain Tumor: A Comparison of Arterial Spin-Labeling versus DSC[J]. AJNR Am J Neuroradiol, 2020, 41(2): 255-261. DOI: 10.3174/ajnr.A6384.
[32]
KONG L, CHEN H, YANG Y, et al. A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade[J]. Clin Radiol, 2017, 72(3): 255-261. DOI: 10.1016/j.crad.2016.10.016.
[33]
DALLERY F, BOUZERAR R, MICHEL D, et al. Perfusion magnetic resonance imaging in pediatric brain tumors[J]. Neuroradiology, 2017, 59(11): 1143-1153. DOI: 10.1007/s00234-017-1917-9.
[34]
DELGADO A F, DE LUCA F, HANAGANDI P, et al. Arterial Spin-Labeling in Children with Brain Tumor: A Meta-Analysis[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1536-1542. DOI: 10.3174/ajnr.A5727.
[35]
GEVERS S, VAN OSCH M J, BOKKERS R P, et al. Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion[J]. J Cereb Blood Flow Metab, 2011, 31(8): 1706-1715. DOI: 10.1038/jcbfm.2011.10.
[36]
WU B, LOU X, WU X, et al. Intra- and interscanner reliability and reproducibility of 3D whole-brain pseudo-continuous arterial spin-labelingv MR perfusion at 3T[J]. J Magn Reson Imaging, 2014, 39(2): 402-409. DOI: 10.1002/jmri.24175.
[37]
ALSAEDI A F, THOMAS D L, DE VITA E, et al. Repeatability of perfusion measurements in adult gliomas using pulsed and pseudo-continuous arterial spin labelling MRI[J]. MAGMA, 2022, 35(1): 113-125. DOI: 10.1007/s10334-021-00975-4.

PREV Application of Sy-MRI combined with DWI in predicting MGMT methylation in glioma
NEXT Application value of DTI in short-term prognosis of patients with branch athero-matous disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn