Share:
Share this content in WeChat
X
Clinical Articles
The value of MRI IVIM in identifying hepatocellular carcinoma and intrahepatic cholangiocarcinoma
WANG Xi  FENG Su  LI Hong  XU Jingxing  HU Shuang  WANG Shen 

Cite this article as: WANG X, FENG S, LI H, et al. The value of MRI IVIM in identifying hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(7): 49-52, 85. DOI:10.12015/issn.1674-8034.2023.07.009.


[Abstract] Objective To explore the value of MRI intravoxel incoherence motion (IVIM) in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC).Materials and Methods This study included 60 patients with malignant hepatic nodules. All patients underwent IVIM scans on a 3.0 T MRI scanner. The slow apparent diffusion (Dslow), fast diffusion coefficient (Dfast), perfusion fraction (f), distributed diffusion coefficient (DDC) and water diffusion heterogeneity index (α) were obtained. Receiver operating characteristic (ROC) curve analysis was used to compare the efficacy of each parameter in differentiating HCC from ICC.Results The Dslow and DDC values of lesions in the HCC group were significantly lower than in the ICC group (all P<0.05), the Dfast of lesions in the HCC group were significantly higher than in the ICC group, f and α values did not statistically differ between the HCC and ICC groups. When the cut-off values of Dslow, Dfast and DDC were 0.88×10-3 mm2/s, 20.82×10-3 mm2/s, and 1.30×10-3 mm2/s, respectively, and the sensitivity was 94.1%, 82.4%, 82.4%, the specificity was 72.1%, 65.1%, 67.4%, and the area under the curve (AUC) was 0.846, 0.756 and 0.803, respectively.Conclusions The biexponential model and the stretched exponential model can be used to differentiate HCC from ICC, and the Dslow had the highest diagnostic efficiency.
[Keywords] hepatocellular carcinoma;intrahepatic cholangiocarcinoma;differential diagnosis;magnetic resonance imaging;intravoxel incoherence motion;biexponential model;stretched model

WANG Xi   FENG Su   LI Hong*   XU Jingxing   HU Shuang   WANG Shen  

Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443001, China

Corresponding author: Li H, E-mail: 1741433022@qq.com

Conflicts of interest   None.

Received  2022-09-10
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.009
Cite this article as: WANG X, FENG S, LI H, et al. The value of MRI IVIM in identifying hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(7): 49-52, 85. DOI:10.12015/issn.1674-8034.2023.07.009.

[1]
Department of Medical Affairs of National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer (2022 edition)[J]. Electron J Liver Tumor, 2022, 9(1): 1-22. DOI: 10.19538/j.cjps.issn.1005-2208.2022.03.01.
[2]
FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937.
[3]
AN L, RAN X H, ZHENG R S, et al. A comparative study on clinical diagnosis and treatment of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in China[J]. Chin J Oncol Prev Treat, 2021, 13(2): 126-132. DOI: 10.3969/j.issn.1674-5671.2021.02.03.
[4]
HUANG B, WU L, LU X Y, et al. Small intrahepatic cholangiocarcinoma and hepatocellular carcinoma in cirrhotic livers may share similar enhancement patterns at multiphase dynamic MR imaging[J]. Radiology, 2016, 281(1): 150-157. DOI: 10.1148/radiol.2016151205.
[5]
VIGANÒ L, LLEO A, MUGLIA R, et al. Intrahepatic cholangiocellular carcinoma with radiological enhancement patterns mimicking hepatocellular carcinoma[J]. Updates Surg, 2020, 72(2): 413-421. DOI: 10.1007/s13304-020-00750-5.
[6]
ÇELEBI F, YAGHOUTI K, CINDIL E, et al. The role of 18F-FDG PET/MRI in the assessment of primary intrahepatic neoplasms[J]. Acad Radiol, 2021, 28(2): 189-198. DOI: 10.1016/j.acra.2020.01.026.
[7]
ASAYAMA Y, NISHIE A, ISHIGAMI K, et al. Distinguishing intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma using precontrast and gadoxetic acid-enhanced MRI[J]. Diagn Interv Radiol, 2015, 21(2): 96-104. DOI: 10.5152/dir.2014.13013.
[8]
LI F, LI Q, LIU Y B, et al. Distinguishing intrahepatic cholangiocarcinoma from hepatocellular carcinoma in patients with and without risks: the evaluation of the LR-M criteria of contrast-enhanced ultrasound liver imaging reporting and data system version 2017[J]. Eur Radiol, 2020, 30(1): 461-470. DOI: 10.1007/s00330-019-06317-2.
[9]
LE BIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[10]
LE BIHAN D. What can we see with IVIM MRI?[J/OL]. Neuroimage, 2019, 187: 56-67 [2022-09-01]. https://www.sciencedirect.com/science/article/pii/S1053811917310868?via%3Dihub. DOI: 10.1016/j.neuroimage.2017.12.062.
[11]
BENNETT K M, SCHMAINDA K M, BENNETT R T, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magn Reson Med, 2003, 50(4): 727-734. DOI: 10.1002/mrm.10581.
[12]
IIMA M, KATAOKA M, KANAO S, et al. Intravoxel incoherent motion and quantitative non-Gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions[J]. Radiology, 2018, 287(2): 432-441. DOI: 10.1148/radiol.2017162853.
[13]
HAN Z, LIU A L, LIU Z Q, et al. Multiple exponential models of diffusion weighted imaging in differentiating hepatocellular carcinoma from hepatic hemangioma[J]. Chin J Magn Reson Imaging, 2017, 8(7): 519-525. DOI: 10.12015/issn.1674-8034.2017.07.008.
[14]
WEI Y, GAO F F, ZHENG D D, et al. Intrahepatic cholangiocarcinoma in the setting of HBV-related cirrhosis: differentiation with hepatocellular carcinoma by using Intravoxel incoherent motion diffusion-weighted MR imaging[J]. Oncotarget, 2018, 9(8): 7975-7983. DOI: 10.18632/oncotarget.23807.
[15]
PENG J, ZHENG J, YANG C, et al. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma[J/OL]. Sci Rep, 2020, 10(1): 7717 [2022-09-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206040.
[16]
CHOI I Y, LEE S S, SUNG Y S, et al. Intravoxel incoherent motion diffusion-weighted imaging for characterizing focal hepatic lesions: correlation with lesion enhancement[J]. J Magn Reson Imaging, 2017, 45(6): 1589-1598. DOI: 10.1002/jmri.25492.
[17]
WU C H, HO M C, JENG Y M, et al. Assessing hepatic fibrosis: comparing the intravoxel incoherent motion in MRI with acoustic radiation force impulse imaging in US[J]. Eur Radiol, 2015, 25(12): 3552-3559. DOI: 10.1007/s00330-015-3774-4.
[18]
SEO N, CHUNG Y E, PARK Y N, et al. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(7): 2812-2822. DOI: 10.1007/s00330-017-5292-z.
[19]
WANG J H, YANG Z X, LUO M, et al. Value of intravoxel incoherent motion (IVIM) imaging for differentiation between intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J/OL]. Contrast Media Mol Imaging, 2022, 2022, 1504463 [2023-04-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113914. DOI: 10.1155/2022/1504463.
[20]
KIM H C, SEO N, CHUNG Y E, et al. Characterization of focal liver lesions using the stretched exponential model: comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging[J]. Eur Radiol, 2019, 29(9): 5111-5120. DOI: 10.1007/s00330-019-06048-4.
[21]
NODA Y, GOSHIMA S, FUJIMOTO K, et al. Comparison of the diagnostic value of mono-exponential, Bi-exponential, and stretched exponential signal models in diffusion-weighted MR imaging for differentiating benign and malignant hepatic lesions[J]. Magn Reson Med Sci, 2021, 20(1): 69-75. DOI: 10.2463/mrms.mp.2019-0151.
[22]
BENNETT K M, HYDE J S, SCHMAINDA K M. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients[J]. Magn Reson Med, 2006, 56(2): 235-239. DOI: 10.1002/mrm.20960.
[23]
LEMKE A, LAUN F B, KLAUSS M, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters[J]. Invest Radiol, 2009, 44(12): 769-775. DOI: 10.1097/RLI.0b013e3181b62271.
[24]
BAI Y, LIN Y S, TIAN J, et al. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging[J]. Radiology, 2016, 278(2): 496-504. DOI: 10.1148/radiol.2015142173.
[25]
XIE J H, LI C H, CHEN Y D, et al. Potential value of the stretched exponential and fractional order Calculus model in discriminating between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an animal experiment of orthotopic xenograft nude mice[J/OL]. Curr Med Imaging, 2023 [2023-04-21]. https://www.eurekaselect.com/214867/article. DOI: 10.2174/1573405619666230322123117.
[26]
GUO R, LIN J, YANG S H, et al. Diffusion kurtosis imaging (DKI) and stretched exponential model (SEM) of magnetic resonance imaging (MRI) for evaluating sequential tumor heterogeneity in an orthotopic hepatocellular carcinoma (HCC) xenograft model[J]. Fudan Univ J Med Sci, 2019, 46(3): 285-293. DOI: 10.3969/j.issn.1672-8467.2019.03.001.

PREV Differentiating pulmonary inflammatory nodules from lung cancer based on whole-focus dynamic enhanced MRI intensity histogram
NEXT Evaluation of peritumoral and intratumoral apparent diffusion coefficient parameters for the diagnosis of pathological factors in resectable rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn