Share:
Share this content in WeChat
X
Clinical Articles
Effect of BOLD-fMRI on early renal function in patients with type 2 diabetes mellitu
SUN Haizhen  SONG Xueyan  LU Shan 

Cite this article as: SUN H Z, SONG X Y, LU S. Effect of BOLD-fMRI on early renal function in patients with type 2 diabetes mellitu[J]. Chin J Magn Reson Imaging, 2023, 14(7): 61-66. DOI:10.12015/issn.1674-8034.2023.07.011.


[Abstract] Objective To explore the value of blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) in the evaluation of early renal functional hypoxia in patients with type 2 diabetes.Materials and Methods Fifty-five patients with type 2 diabetes were divided into diabetes mellitus group (DM group, n=27) and early diabetic nephropathy group (DN group, n=28) according to the presence or absence of microalbuminuria. Thirty age- and sex- matched healthy volunteers were recruited as normal control group (NC group). The cortical R2* value (cortical R2*, CR2*), medulla R2* value (medullary R2*, MR2*) and medulla/cortical R2* (R2* ratio between medulla and cortex, MCR) were calculated by BOLD-fMRI program scan. The intra-group and inter-group comparative analysis was performed. Then receiver operating characteristic (ROC) are plotted.Results The value of MR2* was significantly higher than that of CR2* in the three groups (all P<0.05). There was no significant difference in CR2* among the three groups (P>0.05), but the values of MR2* and MCR in DM group were significantly higher than those in NC group and early DN group (P<0.05), but there was no significant difference between early DN group and NC group (P>0.05). MR2* value, MCR and MR2*+MCR had good diagnostic value in differentiating NC group from DM group, early DM group and early DN group, the AUC values were 0.884 [95% (confidence interval, CI): 0.802-0.966], 0.802 (95% CI: 0.690-0.915) and 0.891 (95% CI: 0.811-0.971); 0.819 (95% CI: 0.707-0.931), 0.759 (95% CI: 0.630-0.889) and 0.824 (95% CI: 0.714-0.934) respectively. There were no significant difference in diagnostic efficacy among all indexes (P>0.05).Conclusions BOLD-fMRI can non-invasively evaluate the early renal damage in patients with diabetes from the level of oxygenation, and can monitor the functional hypoxia changes of renal medulla in the stage of clinical proteinuria, which provides a basis for early clinical diagnosis, timely treatment and improvement of prognosis, and has important clinical value.
[Keywords] type 2 diabetes mellitus;diabetic nephropathy;renal function;blood oxygen level dependence;differential diagnosis;magnetic resonance imaging

SUN Haizhen1, 2   SONG Xueyan1, 2   LU Shan1, 2*  

1 Department of Radiology, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, TianJin 300134, China

2 NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, TianJin 300134, China

Corresponding author: Lu S, E-mail: lushan1213@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Key Laboratory Opening Project of Tianjin Medical University Chu Hsien-I Memorial Hospital (No. ZXY-ZDSYS2020-4).
Received  2023-02-18
Accepted  2023-06-29
DOI: 10.12015/issn.1674-8034.2023.07.011
Cite this article as: SUN H Z, SONG X Y, LU S. Effect of BOLD-fMRI on early renal function in patients with type 2 diabetes mellitu[J]. Chin J Magn Reson Imaging, 2023, 14(7): 61-66. DOI:10.12015/issn.1674-8034.2023.07.011.

[1]
ALICIC R Z, ROONEY M T, TUTTLE K R. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12): 2032-2045. DOI: 10.2215/CJN.11491116.
[2]
BELLARY S, TAHRANI A A, BARNETT A H. Improving management of diabetic kidney disease: will GLP-1 receptor agonists have a role?[J]. Lancet Diabetes Endocrinol, 2020, 8(11): 870-871. DOI: 10.1016/S2213-8587(20)30301-6.
[3]
DE BOER I H, KHUNTI K, SADUSKY T, et al. Diabetes management in chronic kidney disease: a consensus report by the American diabetes association (ADA) and kidney disease: improving global outcomes (KDIGO)[J]. Diabetes Care, 2022, 45(12): 3075-3090. DOI: 10.2337/dci22-0027.
[4]
THOMAS B, MATSUSHITA K, ABATE K H, et al. Global cardiovascular and renal outcomes of reduced GFR[J]. J Am Soc Nephrol, 2017, 28(7): 2167-2179. DOI: 10.1681/ASN.2016050562.
[5]
JARDINE M, ZHOU Z E, LAMBERS HEERSPINK H J, et al. Kidney, cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: a CREDENCE secondary analysis[J]. Clin J Am Soc Nephrol, 2021, 16(3): 384-395. DOI: 10.2215/CJN.15260920.
[6]
HESP A C, SCHAUB J A, PRASAD P V, et al. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors?[J]. Kidney Int, 2020, 98(3): 579-589. DOI: 10.1016/j.kint.2020.02.041.
[7]
GUEDES M, PECOITS-FILHO R. Can we cure diabetic kidney disease? Present and future perspectives from a nephrologist's point of view[J]. J Intern Med, 2022, 291(2): 165-180. DOI: 10.1111/joim.13424.
[8]
LAUSTSEN C, NIELSEN P M, QI H Y, et al. Hyperpolarized[1, 4-13C]fumarate imaging detects microvascular complications and hypoxia mediated cell death in diabetic nephropathy[J/OL]. Sci Rep, 2020, 10(1): 9650 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295762. DOI: 10.1038/s41598-020-66265-6.
[9]
MORA-GUTIÉRREZ J M, FERNÁNDEZ-SEARA M A, ECHEVERRIA-CHASCO R, et al. Perspectives on the role of magnetic resonance imaging (MRI) for noninvasive evaluation of diabetic kidney disease[J/OL]. J Clin Med, 2021, 10(11): 2461 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199575. DOI: 10.3390/jcm10112461.
[10]
FRACASSO A, GAGLIANESE A, VANSTEENSEL M J, et al. FMRI and intra-cranial electrocorticography recordings in the same human subjects reveals negative BOLD signal coupled with silenced neuronal activity[J]. Brain Struct Funct, 2022, 227(4): 1371-1384. DOI: 10.1007/s00429-021-02342-4.
[11]
ZHAO L, LI G Q, MENG F Y, et al. Cortical and medullary oxygenation evaluation of kidneys with renal artery stenosis by BOLD-MRI[J/OL]. PLoS One, 2022, 17(3): e0264630 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912187. DOI: 10.1371/journal.pone.0264630.
[12]
DENG Y L, PAN L, XING W, et al. Application of BOLD-MRI-based radiomics in differentiating malignant from benign renal tumors[J]. J Central South Univ Med Sci, 2021, 46(9): 1010-1017. DOI: 10.11817/j.issn.1672-7347.2021.200827.
[13]
CHEN F, YAN H, YANG F, et al. Evaluation of renal tissue oxygenation using blood oxygen level-dependent magnetic resonance imaging in chronic kidney disease[J]. Kidney Blood Press Res, 2021, 46(4): 441-451. DOI: 10.1159/000515709.
[14]
JIANG Z X, WANG Y, DING J L, et al. Assessment of renal injury in diabetic nephropathy using blood oxygenation level-dependent MRI[J]. Chin J Magn Reson Imaging, 2015, 6(7): 524-528. DOI: 10.3969/j.issn.1674-8034.2015.07.009.
[15]
LUO F L, LIAO Y, CUI K H, et al. Noninvasive evaluation of renal oxygenation in children with chronic kidney disease using blood-oxygen-level-dependent magnetic resonance imaging[J]. Pediatr Radiol, 2020, 50(6): 848-854. DOI: 10.1007/s00247-020-04630-3.
[16]
WANG R, LIN Z Y, YANG X D, et al. Noninvasive evaluation of renal hypoxia by multiparametric functional MRI in early diabetic kidney disease[J]. J Magn Reson Imaging, 2022, 55(2): 518-527. DOI: 10.1002/jmri.27814.
[17]
FENG Y Z, YE Y J, CHENG Z Y, et al. Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI[J/OL]. Br J Radiol, 2020, 93(1105): 20190562 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948087. DOI: 10.1259/bjr.20190562.
[18]
WEI X B, HU R Y, ZHOU X L, et al. Alterations of renal function in patients with diabetic kidney disease: a BOLD and DTI study[J/OL]. Comput Intell Neurosci, 2022, 2022: 6844102 [2022-10-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546653. DOI: 10.1155/2022/6844102.
[19]
XIA P. A preliminary study of functional magnetic resonance imaging on early renal function in diabetic patients[D]. Shanxi Medical University, 2022. DOI: 10.27288/d.cnki.gsxyu.2022.000275.
[20]
GUO Y B, ZHANG X Y, GUO Q B, et al. Evaluated value of BOLD MRI on renal function impairment in patients with type 2 diabetic nephropathy[J]. Chin J CT MRI, 2022, 20(4): 121-123, 168. DOI: 10.3969/j.issn.1672-5131.2022.04.039.
[21]
CAI X L, YANG W J, GAO X Y, et al. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis[J]. Obesity (Silver Spring), 2018, 26(1): 70-80. DOI: 10.1002/oby.22066.
[22]
Diabetes Branch of Chinese Medical Association. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. Chin J Endocrinol Metab, 2021, 37(4): 311-398. DOI: 10.3760/cma.j.cn311282-20210304-00142.
[23]
Microvascular Complications Group of diabetes Credit Association of Chinese Medical Association. Chinese clinical practice guideline of diabetic kidney disease[J]. Chin J Diabetes Mellit, 2019, 11(1): 15-28. DOI: 10.3760/cma.j.issn.1674-5809.2019.01.004.
[24]
ZHENG S S, GAO Z Y, SONG S S, et al. Assessment of urinary microalbumin and oxygenation in diabetic patients using blood oxygenation level-dependent MRI[J]. J Cap Med Univ, 2021, 42(1): 125-130. DOI: 10.3969/j.issn.1006-7795.2021.01.021.
[25]
WANG W, YU Y M, WEN J Q, et al. Combination of functional magnetic resonance imaging and histopathologic analysis to evaluate interstitial fibrosis in kidney allografts[J]. Clin J Am Soc Nephrol, 2019, 14(9): 1372-1380. DOI: 10.2215/CJN.00020119.
[26]
SRIVASTAVA A, CAI X, LEE J, et al. Kidney functional magnetic resonance imaging and change in eGFR in individuals with CKD[J]. Clin J Am Soc Nephrol, 2020, 15(6): 776-783. DOI: 10.2215/CJN.13201019.
[27]
SØRENSEN S S, GULLAKSEN S, VERNSTRØM L, et al. Evaluation of renal oxygenation by BOLD-MRI in high-risk patients with type 2 diabetes and matched controls[J]. Nephrol Dial Transplant, 2023, 38(3): 691-699. DOI: 10.1093/ndt/gfac186.
[28]
YANG G X, MEI Y J, LÜ J, et al. Evaluation of renal oxygenation in rats with acute aristolochic acid nephropathy using blood oxygenation level-dependent magnetic resonance imaging[J]. J South Med Univ, 2019, 39(5): 528-532. DOI: 10.12122/j.issn.1673-4254.2019.05.05.
[29]
YIN W J, LIU F, LI X M, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI[J]. Eur J Radiol, 2012, 81(7): 1426-1431. DOI: 10.1016/j.ejrad.2011.03.045.
[30]
ZHOU H Y, ZHANG J G, ZHANG X M, et al. Noninvasive evaluation of early diabetic nephropathy using diffusion kurtosis imaging: an experimental study[J]. Eur Radiol, 2021, 31(4): 2281-2288. DOI: 10.1007/s00330-020-07322-6.
[31]
ZHENG S S, HE Y M, LU J. Noninvasive evaluation of diabetic patients with high fasting blood glucose using DWI and BOLD MRI[J]. Abdom Radiol, 2021, 46(4): 1659-1669. DOI: 10.1007/s00261-020-02780-4.
[32]
WANG Q D, GUO C G, ZHANG L, et al. BOLD MRI to evaluate early development of renal injury in a rat model of diabetes[J]. J Int Med Res, 2018, 46(4): 1391-1403. DOI: 10.1177/0300060517743826.
[33]
ZHANG B H, WANG Y, WANG C Y, et al. Comparison of blood oxygen level-dependent imaging and diffusion-weighted imaging in early diagnosis of acute kidney injury in animal models[J]. J Magn Reson Imaging, 2019, 50(3): 719-724. DOI: 10.1002/jmri.26617.

PREV Evaluation of peritumoral and intratumoral apparent diffusion coefficient parameters for the diagnosis of pathological factors in resectable rectal cancer
NEXT The value of radiomics based on MRI T2WI in predicting the post-acute pancreatitis diabetes mellitus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn