Share:
Share this content in WeChat
X
Clinical Articles
The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone
FANG Lei  FANG Hui  JIN Li  LIU Xinjiang 

Cite this article as: FANG L, FANG H, JIN L, et al. The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone[J]. Chin J Magn Reson Imaging, 2023, 14(7): 93-97. DOI:10.12015/issn.1674-8034.2023.07.016.


[Abstract] Objective To explore the value of apparent diffusion coefficient minimum (ADCmin) in differential diagnosis of early prostate cancer (PCa) and chronic prostatitis in peripheral zone.Materials and Methods The MRI data of 65 patients of early PCa and 39 patients of chronic prostatitis with pathology confiemed were retrospectively analyzed, the lesions were all located in the peripheral zone of prostate, the mean apparent diffusion coefficient (ADCmean) and ADCmin of the parenchyma of the lesion were measured, the difference of ADCmean and ADCmin between the two groups were analyzed. The receiver operating characteristic (ROC) curve and DeLong test were used to evaluate and compare the diagnostic efficiency of ADCmean and ADCmin for early PCa and chronic prostatitis in peripheral zone.Results The ADCmean and ADCmin in the early PCa group were lower than those in the chronic prostatitis group, and differences between groups were statistically significant (P<0.001). The area under the curve (AUC) of ADCmean and ADCmin were 0.888 and 0.935, there was statistical difference in diagnostic performance by DeLong test (P<0.05). The optimal cut-off value of ADCmean was 1.008×10-3 mm2/s, the sensitivity and specificity or the diagnosis of early PCa were 81.54%, 94.87%, respectively. The optimal cut-off value of ADCmin was 0.861×10-3 mm2/s, the sensitivity and specificity for the diagnosis of early PCa were 83.08%, 94.87%, respectively.Conclusions The diagnostic efficacy of ADCmin in differentiating early PCa and chronic prostatitis in the peripheral zone is better than that of ADCmean, which has good clinical reference value.
[Keywords] prostatic neoplasms;prostate cancer;chronic prostatitis;magnetic resonance imaging;apparent diffusion coefficient

FANG Lei   FANG Hui   JIN Li   LIU Xinjiang*  

Department of Radiology, Pudong Hospital, Fudan University, Shanghai 201399, China

Corresponding author: Liu XJ, E-mail: lxj6513@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Special Item of Clinical Research on Health Industry of Shanghai Health Commission (No. 202140266); Discipline Construction Project of Shanghai Pudong New Area Health System (No. PWZbr2022-16).
Received  2023-01-02
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.016
Cite this article as: FANG L, FANG H, JIN L, et al. The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone[J]. Chin J Magn Reson Imaging, 2023, 14(7): 93-97. DOI:10.12015/issn.1674-8034.2023.07.016.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
HE J, CHEN W Q, LI N, et al. China guideline for the screening and early detection of prostate cancer (2022, Beijing)[J]. Chin J Oncol, 2022, 44(1): 29-53. DOI: 10.3760/cma.j.cn112152-20211226-00975.
[3]
CUI Y D, LI C M, HAN S Y, et al. The diagnostic value of synthetic MRI quantitative parameters for prostate cancer[J]. Chin J Radiol, 2021, 55(9): 975-980. DOI: 10.3760/cma.j.cn112149-20200721-00935.
[4]
HAN C, ZHU L N, LIU X, et al. Differential diagnosis of uncommon prostate diseases: combining mpMRI and clinical information[J/OL]. Insights Imaging, 2021, 12(1): 79 [2023-01-01]. https://insightsimaging.springeropen.com/articles/10.1186/s13244-021-01024-3. DOI: 10.1186/s13244-021-01024-3.
[5]
GUO J F, JI Z Y, XIE B K, et al. Analysis of the diagnostic efficacy of T2WI combined with DWI and DCE-MRI in peripheral chronic prostatitis and prostatic cancer[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1182-1185. DOI: 10.12015/issn.1674-8034.2020.12.023.
[6]
FANG L, CAO M H, FANG H, et al. A preliminary study of T2 FLAIR sequence in the differential diagnosis of prostatitis and prostate cancer[J]. Chin Comput Med Imaging, 2022, 28(3): 281-285. DOI: 10.19627/j.cnki.cn31-1700/th.2022.03.013.
[7]
LI P, HUANG Y, LI Y, et al. Application evaluation of multi-parametric MRI in the diagnosis and differential diagnosis of early prostate cancer and prostatitis[J]. Natl Med J China, 2016, 96(37): 2973-2977. DOI: 10.3760/cma.j.issn.0376-2491.2016.37.010.
[8]
MIN X D, WANG L, FENG C Y, et al. Evaluation of T2WI and readout-segmented echo-planar imaging in diagnosing early prostate cancers: a study based on PI-RADS system[J]. Chin J Magn Reson Imaging, 2015, 6(4): 294-298. DOI: 10.3969/j.issn.1674-8034.2015.04.010.
[9]
ZHANG X, SUN J, DING X Q. Effect of laparoscopic radical prostatectomy on androgen level and incidence of postoperative urinary incontinence in patients with early prostate cancer[J]. Int Med Health Guid News, 2022, 28(18): 2583-2586. DOI: 10.3760/cma.j.issn.1007-1245.2022.18.015.
[10]
WANG L, CHEN M, SHEN J K, et al. China interpretation of PI-RADS guideline for multi-parametric MRI-guided biopsy pathway[J]. Chin J Radiol, 2021, 55(5): 465-469. DOI: 10.3760/cma.j.cn112149-20210223-00146.
[11]
SCIALPI M, MARTORANA E, TORRE R, et al. Index lesion detection in multifocal prostate cancer: simplified PI-RADS biparametric MRI vs PI-RADS v2.1 multiparametric MRI[J]. Clin Imaging, 2023, 94: 108-115. DOI: 10.1016/j.clinimag.2022.11.013.
[12]
SCIALPI M, MARTORANA E, SCIALPI P, et al. S-PI-RADS and PI-RRADS for biparametric MRI in the detection of prostate cancer and post-treatment local recurrence[J]. Anticancer Res, 2023, 43(1): 297-303. DOI: 10.21873/anticanres.16163.
[13]
O'SHEA A, HARISINGHANI M. PI-RADS: multiparametric MRI in prostate cancer[J]. Magn Reson Mater Phy, 2022, 35(4): 523-532. DOI: 10.1007/s10334-022-01019-1.
[14]
WEN J, TANG T T, JI Y G, et al. PI-RADS v2.1 combined with prostate-specific antigen density for detection of prostate cancer in peripheral zone[J/OL]. Front Oncol, 2022, 12: 861928 [2023-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024291. DOI: 10.3389/fonc.2022.861928.
[15]
GAUDIANO C, RUSTICI A, CORCIONI B, et al. PI-RADS version 2.1 for the evaluation of transition zone lesions: a practical guide for radiologists[J/OL]. Br J Radiol, 2022, 95(1131): 20210916 [2023-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978244. DOI: 10.1259/bjr.20210916.
[16]
POCKROS B, STENSLAND K D, PARRIES M, et al. Preoperative MRI PI-RADS scores are associated with prostate cancer upstaging on surgical pathology[J]. Prostate, 2022, 82(3): 352-358. DOI: 10.1002/pros.24280.
[17]
WANG H H, GAO G, HE Q, et al. Comparison of scores between PI-RADS v2.1 and PI-RADS v2 based on prostate slice-by-slice pathology[J]. Chin J Magn Reson Imaging, 2022, 13(4): 120-123. DOI: 10.12015/issn.1674-8034.2022.04.023.
[18]
BOGNER K, ENGELHARD K, WUEST W, et al. Prostate cancer in PI-RADS scores 1 and 2 version 2.1: a comparison to previous PI-RADS versions[J]. Abdom Radiol (NY), 2022, 47(6): 2187-2196. DOI: 10.1007/s00261-022-03444-1.
[19]
ZHAO Y Y, FANG C, WU S L, et al. Prediction and risk assessment of benign and malignant prostate lesions based on Bp-MRI radiomics[J]. Chin J Magn Reson Imaging, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
[20]
HAMMON M, SAAKE M, LAUN F B, et al. Improved visualization of prostate cancer using multichannel computed diffusion images: combining ADC and DWI[J/OL]. Diagnostics (Basel), 2022, 12(7): 1592 [2023-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324736. DOI: 10.3390/diagnostics12071592.
[21]
SONG N, WANG T, ZHANG D, et al. The value of relaxation time quantitative technique from synthetic magnetic resonance imaging in the diagnosis and invasion assessment of prostate cancer[J]. Natl Med J China, 2022, 102(15): 1093-1099. DOI: 10.3760/cma.j.cn112137-20211018-02304.
[22]
DE PERROT T, SADJO ZOUA C, GLESSGEN C G, et al. Diffusion-weighted MRI in the genitourinary system[J/OL]. J Clin Med, 2022, 11(7): 1921 [2023-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000195. DOI: 10.3390/jcm11071921.
[23]
JIN P F, YANG L Q, QIAO X M, et al. Utility of clinical-radiomic model to identify clinically significant prostate cancer in biparametric MRI PI-RADS V2.1 category 3 lesions[J/OL]. Front Oncol, 2022, 12: 840786 [2023-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913337. DOI: 10.3389/fonc.2022.840786.
[24]
LI M J, ZHANG C Y, ZHAO W L, et al. Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI[J]. Chin J Magn Reson Imaging, 2022, 13(11): 76-81. DOI: 10.12015/issn.1674-8034.2022.11.014.
[25]
TAN C H, WANG J H, KUNDRA V. Diffusion weighted imaging in prostate cancer[J]. Eur Radiol, 2011, 21(3): 593-603. DOI: 10.1007/s00330-010-1960-y.
[26]
ZHAO Y Y, ZHANG D, SONG N, et al. Diagnostic value of ultra-high b-value DWI in peripheral prostate cancer[J]. Chin J Magn Reson Imaging, 2021, 12(12): 24-28. DOI: 10.12015/issn.1674-8034.2021.12.005.
[27]
ROSENKRANTZ A B, PARIKH N, KIERANS A S, et al. Prostate cancer detection using computed very high b-value diffusion-weighted imaging: how high should we go?[J]. Acad Radiol, 2016, 23(6): 704-711. DOI: 10.1016/j.acra.2016.02.003.
[28]
GUO A C, CUMMINGS T J, DASH R C, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics[J]. Radiology, 2002, 224(1): 177-183. DOI: 10.1148/radiol.2241010637.
[29]
YAMASHITA Y, KUMABE T, HIGANO S, et al. Minimum apparent diffusion coefficient is significantly correlated with cellularity in medulloblastomas[J]. Neurol Res, 2009, 31(9): 940-946. DOI: 10.1179/174313209X382520.
[30]
UYSAL A, KARAOSMANOĞLU A D, KARCAALTıNCABA M, et al. Prostatitis, the great mimicker of prostate cancer: can we differentiate them quantitatively with multiparametric MRI?[J]. AJR Am J Roentgenol, 2020, 215(5): 1104-1112. DOI: 10.2214/AJR.20.22843.
[31]
YI N, WANG Y J, WANG P, et al. Application of MRI apparent diffusion coefficient in identifying prognostic risk stratification of prostate cancer[J]. Chin J Magn Reson Imaging, 2022, 13(12): 104-110. DOI: 10.12015/issn.1674-8034.2022.12.018.
[32]
WU F, HU H J, HE J, et al. A study on the utility of minimum ADC to decrease the biopsy rate of BI-RADS 4 and 5 lesions prompted by breast MRI[J]. J Clin Radiol, 2022, 41(7): 1286-1291. DOI: 10.3760/cma.j.issn.1005-1201.2016.08.001.
[33]
YANG J, LI X Y, ZHAN H H. The minimum apparent diffusion coeffecient(ADC)value for differential diagnosis of parotid masses[J]. Chin J Med Imaging Technol, 2022, 38(8): 1162-1165. DOI: 10.13929/j.issn.1003-3289.2022.08.008.
[34]
ZHANG J, LI S D. Correlation analysis between ADC minimum, rADC minimum and Fuhrman classification of renal clear cell carcinoma[J]. Chin J Magn Reson Imaging, 2020, 11(9): 793-796. DOI: 10.12015/issn.1674-8034.2020.09.015.
[35]
XIAO Y, LIAO K B, SHI X Y, et al. Value of mean ADC and minimum ADC in identifying benign and malignant soft tissue tumors of extremities[J]. Radiol Pract, 2021, 36(1): 112-116. DOI: 10.13609/j.cnki.1000-0313.2021.01.022.
[36]
LI Y Z, MAIERHABA N, XU H, et al. Evaluation of magnetic resonance DWI-ADC value in assessing the early efficacy of neoadjuvant chemotherapy for conventional osteosarcoma[J]. Chin J Magn Reson Imaging, 2022, 13(11): 88-92, 136. DOI: 10.12015/issn.1674-8034.2022.11.016.
[37]
INCESU L, ABDULLAYEV S, OZTURK M, et al. Role of apparent diffusion coefficient measurement in differentiating histological subtypes of brain metastasis of lung cancer[J]. Rev Assoc Med Bras (1992), 2022, 68(9): 1318-1323. DOI: 10.1590/1806-9282.20220630.
[38]
WEI W J, JI Y N, TANG Z, et al. Breast magnetic resonance imaging can predict Ki67 discordance between core needle biopsy and surgical samples[J]. J Magn Reson Imaging, 2023, 57(1): 85-94. DOI: 10.1002/jmri.28231.
[39]
FAN C Y, SUN K L, MIN X D, et al. Discriminating malignant from benign testicular masses using machine-learning based radiomics signature of appearance diffusion coefficient maps: comparing with conventional mean and minimum ADC values[J/OL]. Eur J Radiol, 2022, 148: 110158 [2023-01-01]. https://www.ejradiology.com/article/S0720-048X(22)00008-0/fulltext. DOI: 10.1016/j.ejrad.2022.110158.

PREV Application of magnetization transfer imaging combined with DWI and T2WI in diagnosis and grading of prostate cancer
NEXT Monitoring changes of the muscles around the knee joint in amateur marathon athletes using synthetic magnetic resonance imaging: A preliminary study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn