Share:
Share this content in WeChat
X
Clinical Articles
Monitoring changes of the muscles around the knee joint in amateur marathon athletes using synthetic magnetic resonance imaging: A preliminary study
WU Wenhao  ZHU Huimin  ZHU Dantian  HU Feng  GUO Yuankun  LI Shaolin  FANG Yijie 

Cite this article as: WU W H, ZHU H M, ZHU D T, et al. Monitoring changes of the muscles around the knee joint in amateur marathon athletes using synthetic magnetic resonance imaging: A preliminary study[J]. Chin J Magn Reson Imaging, 2023, 14(7): 98-102, 120. DOI:10.12015/issn.1674-8034.2023.07.017.


[Abstract] Objective To investigate the value of synthetic MRI (SyMRI) sequences for quantitative detection of the muscles around the knee joints before and after amateur marathon runners participated in a marathon.Materials and Methods Twenty-four amateur marathon runners (48 knees), 21 males and 3 females, aged 24 to 50 (40±6) years, were prospectively recruited. All subjects were examined with GE SIGNA Pioneer 3.0 T MRI. SyMRI sequences of both knees were performed 1 week before the marathon, 48 hours after the marathon, and 1 month after the marathon. Conventional contrast-weighted images as well as 3 quantitative profiles of T1, T2, and proton density (PD) were obtained after scanning. ITK-SNAP software was applied in the post-processing platform to measure the T1, T2, and PD values of the semimembranosus, biceps femoris, lateral femoris, medial femoris, medial head of the gastrocnemius, and lateral head of gastrocnemius, popliteus, and tibialis anterior muscles in sagittal images of the knee joint. The differences in T1, T2, and PD values of each muscle were analyzed before and 48 hours after the race and 1 month after the race.Results All subjects showed no significant abnormalities in muscle morphology or signal around the knee during the examination (P>0.05). The values of T1, T2 and PD of the muscles around the knee joint measured by two radiologists were good consistent, with ICC values of 0.801, 0.909 and 0.921, respectively. Most muscle subregions had elevated T1, T2, and PD values 48 hours after the marathon compared to pre-race, and decreased after 1 month of post-race rest. There were statistically significant changes in T2 values for semimembranosus, biceps femoris, lateral femoris, medial femoris, medial head of the gastrocnemius, and lateral head of gastrocnemius (P<0.05), and statistically significant changes in PD values for medial femoris (P<0.05).Conclusions The quantitative parameter values of SyMRI sequences can be useful for detecting dynamic changes in the knee muscles before and after marathon exercise.
[Keywords] knee joint;muscle;marathon;synthetic magnetic resonance imaging;magnetic resonance imaging

WU Wenhao   ZHU Huimin   ZHU Dantian   HU Feng   GUO Yuankun   LI Shaolin   FANG Yijie*  

Department of Radiology, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China

Corresponding author: Fang YJ, E-mail: fangyj5@mail.sysu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundition of China (No. 82101995, 82172053).
Received  2022-09-09
Accepted  2023-06-29
DOI: 10.12015/issn.1674-8034.2023.07.017
Cite this article as: WU W H, ZHU H M, ZHU D T, et al. Monitoring changes of the muscles around the knee joint in amateur marathon athletes using synthetic magnetic resonance imaging: A preliminary study[J]. Chin J Magn Reson Imaging, 2023, 14(7): 98-102, 120. DOI:10.12015/issn.1674-8034.2023.07.017.

[1]
VAN GENT R N, SIEM D, VAN MIDDELKOOP M, et al. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review[J]. Br J Sports Med, 2007, 41(8): 469-480. DOI: 10.1136/bjsm.2006.033548.
[2]
HEIDERSCHEIT B C, SHERRY M A, SILDER A, et al. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention[J]. J Orthop Sports Phys Ther, 2010, 40(2): 67-81. DOI: 10.2519/jospt.2010.3047.
[3]
MUELLER-WOHLFAHRT H W, HAENSEL L, MITHOEFER K, et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement[J]. Br J Sports Med, 2013, 47(6): 342-350. DOI: 10.1136/bjsports-2012-091448.
[4]
CONNELL D A, SCHNEIDER-KOLSKY M E, HOVING J L, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries[J]. AJR Am J Roentgenol, 2004, 183(4): 975-984. DOI: 10.2214/ajr.183.4.1830975.
[5]
BROWN R, SHARAFI A, SLADE J M, et al. Lower extremity MRI following 10-week supervised exercise intervention in patients with diabetic peripheral neuropathy[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1): e002312 [2022-05-01]. https://pubmed.ncbi.nlm.nih.gov/35397060/. DOI: 10.1136/bmjdrc-2021-002312.
[6]
JURAS V, MLYNARIK V, SZOMOLANYI P, et al. Magnetic resonance imaging of the musculoskeletal system at 7T: morphological imaging and beyond[J]. Top Magn Reson Imaging, 2019, 28(3): 125-135. DOI: 10.1097/RMR.0000000000000205.
[7]
ZHANG R X, YU H, ZHANG P, et al. Analysis of the characteristics of MRI T 2 value changes of the muscles around the knee joint before and after the race in amateur marathon runners based on T 2 mapping[J]. Natl Med J China, 2022, 102(9): 648-653. DOI: 10.3760/cma.j.cn112137-20210626-01448.
[8]
HOOIJMANS M T, MONTE J R C, FROELING M, et al. Quantitative MRI reveals microstructural changes in the upper leg muscles after running a marathon[J]. J Magn Reson Imaging, 2020, 52(2): 407-417. DOI: 10.1002/jmri.27106.
[9]
FROELING M, OUDEMAN J, STRIJKERS G J, et al. Muscle changes detected with diffusion-tensor imaging after long-distance running[J]. Radiology, 2015, 274(2): 548-562. DOI: 10.1148/radiol.14140702.
[10]
TAKAO S, KANEDA M, SASAHARA M, et al. Diffusion tensor imaging (DTI) of human lower leg muscles: correlation between DTI parameters and muscle power with different ankle positions[J]. Jpn J Radiol, 2022, 40(9): 939-948. DOI: 10.1007/s11604-022-01274-1.
[11]
BIGLANDS J D, GRAINGER A J, ROBINSON P, et al. MRI in acute muscle tears in athletes: can quantitative T2 and DTI predict return to play better than visual assessment?[J]. Eur Radiol, 2020, 30(12): 6603-6613. DOI: 10.1007/s00330-020-06999-z.
[12]
ENGLUND E K, BERRY D B, BEHUN J J, et al. IVIM imaging of paraspinal muscles following moderate and high-intensity exercise in healthy individuals[J/OL]. Front Rehabil Sci, 2022, 3: 910068 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/35959464/. DOI: 10.3389/fresc.2022.910068.
[13]
CHEN S, OUYANG H. The application value of synthetic MRI in diagnosis[J]. Chin J Magn Reson Imaging, 2020, 11(9): 833-836. DOI: 10.12015/issn.1674-8034.2020.09.027.
[14]
HAGIWARA A, WARNTJES M, HORI M, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
[15]
FRITZ J. T2 mapping without additional scan time using synthetic knee MRI[J]. Radiology, 2019, 293(3): 631-632. DOI: 10.1148/radiol.2019192046.
[16]
KUMAR N M, FRITZ B, STERN S E, et al. Synthetic MRI of the knee: phantom validation and comparison with conventional MRI[J]. Radiology, 2018, 289(2): 465-477. DOI: 10.1148/radiol.2018173007.
[17]
FANG Y J, WU W H, GUO S S, et al. Monitoring changes of knee in amateur marathon athletes using synthetic MRI: a preliminary study[J]. Chin J Radiol, 2021, 55(6): 615-620. DOI: 10.3760/cma.j.cn112149-20200810-01000.
[18]
VOGRIG C, LOUIS J S, AVILA F, et al. Synthetic MRI is not yet ready for morphologic and functional assessment of patellar cartilage at 1.5 Tesla[J]. Diagn Interv Imaging, 2021, 102(3): 181-187. DOI: 10.1016/j.diii.2020.09.002.
[19]
LEE C N, CHOI Y J, JEON K J, et al. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders[J/OL]. Dentomaxillofac Radiol, 2021, 50(5): 20200584 [2022-05-01]. https://pubmed.ncbi.nlm.nih.gov/33544630/. DOI: 10.1259/dmfr.20200584.
[20]
JI S, YANG D J, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[21]
KRAUSS W, GUNNARSSON M, NILSSON M, et al. Conventional and synthetic MRI in multiple sclerosis: a comparative study[J]. Eur Radiol, 2018, 28(4): 1692-1700. DOI: 10.1007/s00330-017-5100-9.
[22]
LIU W X, DANG P, YANG X H, et al. A preliminary study of synthetic magnetic resonance imaging in the clinical application of minimal hepatic encephalopathy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 6-10. DOI: 10.12015/issn.1674-8034.2022.05.002.
[23]
DU S Y, GAO S, ZHAO R M, et al. Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer[J]. Eur Radiol, 2022, 32(8): 5759-5772. DOI: 10.1007/s00330-022-08667-w.
[24]
ARITA Y, AKITA H, FUJIWARA H, et al. Synthetic magnetic resonance imaging for primary prostate cancer evaluation: diagnostic potential of a non-contrast-enhanced bi-parametric approach enhanced with relaxometry measurements[J/OL]. Eur J Radiol Open, 2022, 9: 100403 [2022-05-01]. https://pubmed.ncbi.nlm.nih.gov/35242886/. DOI: 10.1016/j.ejro.2022.100403.
[25]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[26]
PARK S, KWACK K S, LEE Y J, et al. Initial experience with synthetic MRI of the knee at 3T: comparison with conventionalT1 weighted imagingT2 mapping[J/OL]. Br J Radiol, 2017, 90(1080): 20170350 [2022-05-01]. https://pubmed.ncbi.nlm.nih.gov/28934866/. DOI: 10.1259/bjr.20170350.
[27]
ABABNEH Z Q, ABABNEH R, MAIER S E, et al. On the correlation between T(2) and tissue diffusion coefficients in exercised muscle: quantitative measurements at 3T within the tibialis anterior[J]. MAGMA, 2008, 21(4): 273-278. DOI: 10.1007/s10334-008-0120-8.
[28]
MALLIAROPOULOS N, PAPACOSTAS E, KIRITSI O, et al. Posterior thigh muscle injuries in elite track and field athletes[J]. Am J Sports Med, 2010, 38(9): 1813-1819. DOI: 10.1177/0363546510366423.
[29]
MILLER R, BALSHAW T G, MASSEY G J, et al. The muscle morphology of elite female sprint running[J]. Med Sci Sports Exerc, 2022, 54(12): 2138-2148. DOI: 10.1249/MSS.0000000000002999.
[30]
LORIO S, TIERNEY T M, MCDOWELL A, et al. Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA) data[J]. Neuroimage, 2019, 186: 464-475. DOI: 10.1016/j.neuroimage.2018.11.023.
[31]
ZHANG K, LIU C R, ZHU Y F, et al. Synthetic MRI in the detection and quantitative evaluation of sacroiliac joint lesions in axial spondyloarthritis[J/OL]. Front Immunol, 2022, 13: 1000314 [2022-06-09]. https://pubmed.ncbi.nlm.nih.gov/36225919/. DOI: 10.3389/fimmu.2022.1000314.

PREV The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone
NEXT Clinical value of diffusion tensor imaging in polymyositis and dermatomyositis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn