Share:
Share this content in WeChat
X
Reviews
Research progress of magnetic resonance cerebral perfusion imaging in Alzheimer's disease
LI Dongxue  LIU Benqin  ZHANG Jiaren  HUANG Qing  LIU Jiaji  JIANG Lin 

Cite this article as: LI D X, LIU B Q, ZHANG J R, et al. Research progress of magnetic resonance cerebral perfusion imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2023, 14(7): 129-133. DOI:10.12015/issn.1674-8034.2023.07.023.


[Abstract] Alzheimer's disease (AD) is currently considered to be a continuous AD spectrum (ADS) disease that includes subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD-derived dementia. Studies have confirmed that vascular injury and destruction of blood-brain barrier are involved in the onset and development of AD spectrum (ADS) disease. MR perfusion imaging can better display these pathological changes through quantitative analysis of cerebral blood flow changes, and image indicators of some abnormal perfusion brain areas can be used as biomarkers for early diagnosis. This paper summarizes and analyzes the characteristics of MR perfusion imaging technology at the present stage and its application research in ADS diseases, in order to provide some references for MR perfusion imaging in subsequent relevant studies. Meanwhile, it is proposed that fusion multimodal MRI can provide more imaging information reflecting the biological changes of the disease, and provide an objective imaging basis for the early non-invasive diagnosis of ADS diseases.
[Keywords] Alzheimer's disease;perfusion imaging;magnetic resonance imaging;research progress

LI Dongxue   LIU Benqin   ZHANG Jiaren   HUANG Qing   LIU Jiaji   JIANG Lin*  

Department of Radiology, the Third Affiliated Hospital of Zunyi Medical University/the First People's Hospital of Zunyi, Zunyi 563000, China

Corresponding author: Jiang L, E-mail: jlinzmc@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82160328); Natural Science Foundation of Zunyi [No. Zun Shi Ke He HZ zi (2021) 267 hao].
Received  2023-03-18
Accepted  2023-06-25
DOI: 10.12015/issn.1674-8034.2023.07.023
Cite this article as: LI D X, LIU B Q, ZHANG J R, et al. Research progress of magnetic resonance cerebral perfusion imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2023, 14(7): 129-133. DOI:10.12015/issn.1674-8034.2023.07.023.

[1]
MARCOLINI S, FRENTZ I, SANCHEZ-CATASUS C A, et al. Effects of interventions on cerebral perfusion in the Alzheimer's disease spectrum: A systematic review[J]. Ageing Res Rev, 2022, 79: 101661. DOI: 10.1016/j.arr.2022.101661.
[2]
MONTAGNE A, NATION D A, SAGARE A P, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline[J]. Nature, 2020, 581(7806): 71-76. DOI: 10.1038/s41586-020-2247-3.
[3]
MONTAGNE A, HUUSKONEN M T, RAJAGOPAL G, et al. Undetectable gadolinium brain retention in individuals with an age-dependent blood-brain barrier breakdown in the hippocampus and mild cognitive impairment[J]. Alzheimers Dement, 2019, 15(12): 1568-1575. DOI: 10.1016/j.jalz.2019.07.012.
[4]
NIEMANTSVERDRIET E, VALCKX S, BJERKE M, et al. Alzheimer's disease CSF biomarkers: clinical indications and rational use[J]. Acta Neurol Belg, 2017, 117(3): 591-602. DOI: 10.1007/s13760-017-0816-5.
[5]
BUTTERFIELD D A, BOYD-KIMBALL D. Oxidative Stress, Amyloid-beta Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer's Disease[J]. J Alzheimers Dis, 2018, 62(3): 1345-1367. DOI: 10.3233/JAD-170543.
[6]
MEYER P F, SAVARD M, POIRIER J, et al. Bi-directional Association of Cerebrospinal Fluid Immune Markers with Stage of Alzheimer's Disease Pathogenesis[J]. J Alzheimers Dis, 2018, 63(2): 577-590. DOI: 10.3233/JAD-170887.
[7]
SWERDLOW R H. Mitochondria and Mitochondrial Cascades in Alzheimer's Disease[J]. J Alzheimers Dis, 2018, 62(3): 1403-1416. DOI: 10.3233/JAD-170585.
[8]
CLARKE J R, RIBEIRO F C, FROZZA R L, et al. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches[J/OL]. J Alzheimers Dis, 2018, 64(s1): S405-S426 [2023-03-17]. https://pubmed.ncbi.nlm.nih.gov/29562518/. DOI: 10.3233/JAD-179911.
[9]
IADECOLA C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia[J]. Acta Neuropathol, 2010, 120(3): 287-296. DOI: 10.1007/s00401-010-0718-6.
[10]
TRIPATHY D, SANCHEZ A, YIN X, et al. Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia[J]. Front Aging Neurosci, 2013, 5: 19. DOI: 10.3389/fnagi.2013.00019.
[11]
ROMAN G C, BOLLER F. Vascular factors in neurodegenerative diseases: a path towards treatment and prevention[J/OL]. Funct Neurol, 2014, 29(2): 85-86 [2023-03-17]. https://www.ncbi.nlm.nih.gov/pubmed/25306117.
[12]
ZIMNY A, SZEWCZYK P, TRYPKA E, et al. Multimodal imaging in diagnosis of Alzheimer's disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region[J]. J Alzheimers Dis, 2011, 27(3): 591-601. DOI: 10.3233/JAD-2011-110254.
[13]
WABIK A, TRYPKA E, BLADOWSKA J, et al. Comparison of dynamic susceptibility contrast enhanced MR and FDG-PET brain studies in patients with Alzheimer's disease and amnestic mild cognitive impairment[J]. J Transl Med, 2022, 20(1): 259. DOI: 10.1186/s12967-022-03464-x.
[14]
ESKILDSEN S F, GYLDENSTED L, NAGENTHIRAJA K, et al. Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion study[J]. Neurobiol Aging, 2017, 50: 107-118. DOI: 10.1016/j.neurobiolaging.2016.11.004.
[15]
CAVALLIN L, AXELSSON R, WAHLUND L O, et al. Voxel-based correlation between coregistered single-photon emission computed tomography and dynamic susceptibility contrast magnetic resonance imaging in subjects with suspected Alzheimer disease[J]. Acta Radiol, 2008, 49(10): 1154-1161. DOI: 10.1080/02841850802438512.
[16]
BRYANT A G, MANHARD M K, SALAT D H, et al. Heterogeneity of Tau Deposition and Microvascular Involvement in MCI and AD[J]. Curr Alzheimer Res, 2021, 18(9): 711-720. DOI: 10.2174/1567205018666211126113904.
[17]
CHOI J D, MOON Y, KIM H J, et al. Choroid Plexus Volume and Permeability at Brain MRI within the Alzheimer Disease Clinical Spectrum[J]. Radiology, 2022, 304(3): 635-645. DOI: 10.1148/radiol.212400.
[18]
BEN-NEJMA I R H, KELIRIS A J, VANREUSEL V, et al. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis[J]. Alzheimers Res Ther, 2023, 15(1): 23. DOI: 10.1186/s13195-023-01175-z.
[19]
FREEZE W M, JACOBS H I L, DE JONG J J, et al. White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed[J]. Neurobiol Aging, 2020, 85: 113-122. DOI: 10.1016/j.neurobiolaging.2019.09.017.
[20]
MONTAGNE A, NIKOLAKOPOULOU A M, HUUSKONEN M T, et al. APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer's mice via cyclophilin A independently of amyloid-beta[J]. Nat Aging, 2021, 1(6): 506-520. DOI: 10.1038/s43587-021-00073-z.
[21]
VAN DE HAAR H J, JANSEN J F A, JEUKENS C, et al. Subtle blood-brain barrier leakage rate and spatial extent: Considerations for dynamic contrast-enhanced MRI[J]. Med Phys, 2017, 44(8): 4112-4125. DOI: 10.1002/mp.12328.
[22]
DICKIE B R, VANDESQUILLE M, ULLOA J, et al. Water-exchange MRI detects subtle blood-brain barrier breakdown in Alzheimer's disease rats[J]. Neuroimage, 2019, 184: 349-358. DOI: 10.1016/j.neuroimage.2018.09.030.
[23]
HARTKAMP N S, VAN OSCH M J, KAPPELLE J, et al. Arterial spin labeling magnetic resonance perfusion imaging in cerebral ischemia[J]. Curr Opin Neurol, 2014, 27(1): 42-53. DOI: 10.1097/WCO.0000000000000051.
[24]
ROBERTS D A, DETRE J A, BOLINGER L, et al. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water[J]. Proc Natl Acad Sci U S A, 1994, 91(1): 33-37. DOI: 10.1073/pnas.91.1.33.
[25]
TAKAHASHI H, ISHII K, HOSOKAWA C, et al. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT[J]. AJNR Am J Neuroradiol, 2014, 35(5): 906-911. DOI: 10.3174/ajnr.A3780.
[26]
RIEDERER I, BOHN K P, PREIBISCH C, et al. Alzheimer Disease and Mild Cognitive Impairment: Integrated Pulsed Arterial Spin-Labeling MRI and (18)F-FDG PET[J]. Radiology, 2018, 288(1): 198-206. DOI: 10.1148/radiol.2018170575.
[27]
LACALLE-AURIOLES M, NAVAS-SANCHEZ F J, ALEMAN-GOMEZ Y, et al. The Disconnection Hypothesis in Alzheimer's Disease Studied Through Multimodal Magnetic Resonance Imaging: Structural, Perfusion, and Diffusion Tensor Imaging[J]. J Alzheimers Dis, 2016, 50(4): 1051-1064. DOI: 10.3233/JAD-150288.
[28]
KAPASOURI E M, IOANNIDIS D C, CAMERON D, et al. The Utility of Arterial Spin Labeling MRI in Medial Temporal Lobe as a Vascular Biomarker in Alzheimer's Disease Spectrum: A Systematic Review and Meta-Analysis[J]. Diagnostics (Basel), 2022, 12(12): 2967. DOI: 10.3390/diagnostics12122967.
[29]
ZENG X Z, YUAN H S, LIU Y, et al. Characteristics of Cerebral Blood Flow and Cerebral Gray Matter in Patients with Mild Alzheimer's Disease Using Voxel-based Method[J]. Chin J Med Imaging, 2017, 25(2): 81-85. DOI: 10.3969/j.issn.1005-5185.2017.02.001.
[30]
DING B, LING H W, ZHANG Y, et al. Pattern of cerebral hyperperfusion in Alzheimer's disease and amnestic mild cognitive impairment using voxel-based analysis of 3D arterial spin-labeling imaging: initial experience[J]. Clin Interv Aging, 2014, 9: 493-500. DOI: 10.2147/CIA.S58879.
[31]
LI D, LIU Y, ZENG X, et al. Quantitative Study of the Changes in Cerebral Blood Flow and Iron Deposition During Progression of Alzheimer's Disease[J]. J Alzheimers Dis, 2020, 78(1): 439-452. DOI: 10.3233/JAD-200843.
[32]
HAYS C C, ZLATAR Z Z, CAMPBELL L, et al. Subjective Cognitive Decline Modifies the Relationship Between Cerebral Blood Flow and Memory Function in Cognitively Normal Older Adults[J]. J Int Neuropsychol Soc, 2018, 24(3): 213-223. DOI: 10.1017/S135561771700087X.
[33]
BINNEWIJZEND M A, KUIJER J P, BENEDICTUS M R, et al. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity[J]. Radiology, 2013, 267(1): 221-230. DOI: 10.1148/radiol.12120928.
[34]
WANG Z, DAS S R, XIE S X, et al. Arterial spin labeled MRI in prodromal Alzheimer's disease: A multi-site study[J]. Neuroimage Clin, 2013, 2: 630-636. DOI: 10.1016/j.nicl.2013.04.014.
[35]
SUN M, WANG Y L, LI R, et al. Potential Diagnostic Applications of Multi-Delay Arterial Spin Labeling in Early Alzheimer's Disease: The Chinese Imaging, Biomarkers, and Lifestyle Study[J]. Front Neurosci, 2022, 16: 934471. DOI: 10.3389/fnins.2022.934471.
[36]
YANG J, SUI H, JIAO R, et al. Random-Forest-Algorithm-Based Applications of the Basic Characteristics and Serum and Imaging Biomarkers to Diagnose Mild Cognitive Impairment[J]. Curr Alzheimer Res, 2022, 19(1): 76-83. DOI: 10.2174/1567205019666220128120927.
[37]
XU Y, CHEN L L, SU Y, et al. [Regression analysis of cerebral blood perfusion and cognitive function in patients with mild cognitive impairment and Alzheimer's disease][J]. Zhonghua Yi Xue Za Zhi, 2019, 99(3): 193-197. DOI: 10.3760/cma.j.issn.0376-2491.2019.03.008.
[38]
COLLIJ L E, HEEMAN F, KUIJER J P, et al. Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease[J]. Radiology, 2016, 281(3): 865-875. DOI: 10.1148/radiol.2016152703.
[39]
BERGAMINO M, NESPODZANY A, BAXTER L C, et al. Preliminary Assessment of Intravoxel Incoherent Motion Diffusion-Weighted MRI (IVIM-DWI) Metrics in Alzheimer's Disease[J]. J Magn Reson Imaging, 2020, 52(6): 1811-1826. DOI: 10.1002/jmri.27272.
[40]
BERGAMINO M, BURKE A, BAXTER L C, et al. Longitudinal Assessment of Intravoxel Incoherent Motion Diffusion-Weighted MRI Metrics in Cognitive Decline[J]. J Magn Reson Imaging, 2022, 56(6): 1845-1862. DOI: 10.1002/jmri.28172.
[41]
XIA N, LI Y, XUE Y, et al. Intravoxel incoherent motion diffusion-weighted imaging in the characterization of Alzheimer's disease[J]. Brain Imaging Behav, 2022, 16(2): 617-626. DOI: 10.1007/s11682-021-00538-0.
[42]
FEDERAU C, O'BRIEN K, MEULI R, et al. Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience[J]. J Magn Reson Imaging, 2014, 39(3): 624-632. DOI: 10.1002/jmri.24195.
[43]
ABDEL RAZEK A A K. Editorial for "Preliminary Assessment of Intravoxel Incoherent Motion Diffusion-Weighted MRI (IVIM-DWI) Metrics in Alzheimer's Disease"[J]. J Magn Reson Imaging, 2020, 52(6): 1827-1828. DOI: 10.1002/jmri.27309.
[44]
WIERENGA C E, HAYS C C, ZLATAR Z Z. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer's disease[J/OL]. J Alzheimers Dis, 2014, 42Suppl 4(Suppl 4): S411-S419 [2023-03-17]. https://pubmed.ncbi.nlm.nih.gov/25159672/. DOI: 10.3233/JAD-141467.
[45]
KANTARCI K, JACK C R, XU Y C, et al. Mild cognitive impairment and Alzheimer disease: regional diffusivity of water[J]. Radiology, 2001, 219(1): 101-107. DOI: 10.1148/radiology.219.1.r01ap14101.
[46]
XU L, LAI L, WEN Y, et al. Angiopep-2, an MRI Biomarker, Dynamically Monitors Amyloid Deposition in Early Alzheimer's Disease[J]. ACS Chem Neurosci, 2023, 14(2): 226-234. DOI: 10.1021/acschemneuro.2c00513.
[47]
LIU Y, LI J, JI H, et al. Comparisons of Glutamate in the Brains of Alzheimer's Disease Mice Under Chemical Exchange Saturation Transfer Imaging Based on Machine Learning Analysis[J]. Front Neurosci, 2022, 16: 838157. DOI: 10.3389/fnins.2022.838157.
[48]
HUANG J, LAI J H C, TSE K H, et al. Deep neural network based CEST and AREX processing: Application in imaging a model of Alzheimer's disease at 3 T[J]. Magn Reson Med, 2022, 87(3): 1529-1545. DOI: 10.1002/mrm.29044.
[49]
WANG R, CHEN P, SHEN Z, et al. Brain Amide Proton Transfer Imaging of Rat With Alzheimer's Disease Using Saturation With Frequency Alternating RF Irradiation Method[J]. Front Aging Neurosci, 2019, 11: 217. DOI: 10.3389/fnagi.2019.00217.
[50]
OHNO K, OHKUBO M, ZHENG B, et al. GlyCEST: Magnetic Resonance Imaging of Glycine-Distribution in the Normal Murine Brain and Alterations in 5xFAD Mice[J]. Contrast Media Mol Imaging, 2021, 2021: 8988762. DOI: 10.1155/2021/8988762.
[51]
LI J, ZHANG B, JIA W, et al. Activation of Adenosine Monophosphate-Activated Protein Kinase Drives the Aerobic Glycolysis in Hippocampus for Delaying Cognitive Decline Following Electroacupuncture Treatment in APP/PS1 Mice[J]. Front Cell Neurosci, 2021, 15: 774569. DOI: 10.3389/fncel.2021.774569.
[52]
NINOMIYA T, NAKAJI S, MAEDA T, et al. Study design and baseline characteristics of a population-based prospective cohort study of dementia in Japan: the Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD)[J]. Environ Health Prev Med, 2020, 25(1): 64. DOI: 10.1186/s12199-020-00903-3.
[53]
UDEH-MOMOH C T, WATERMEYER T, PRICE G, et al. Protocol of the Cognitive Health in Ageing Register: Investigational, Observational and Trial Studies in Dementia Research (CHARIOT): Prospective Readiness cOhort (PRO) SubStudy[J/OL]. BMJ Open, 2021, 11(6): e043114 [2023-03-17]. https://pubmed.ncbi.nlm.nih.gov/34168021/. DOI: 10.1136/bmjopen-2020-043114.

PREV A case of low-grade malignant myofibroblastic sarcoma of chest wall
NEXT Research progress of MRI in cognitive impairment of Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn